Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Hum Mol Genet ; 31(5): 748-760, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34559225

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy clinically characterized by weakness in the facial, shoulder girdle and upper a muscles. FSHD is caused by chromatin relaxation of the D4Z4 macrosatellite repeat, mostly by a repeat contraction, facilitating ectopic expression of DUX4 in skeletal muscle. Genetic diagnosis for FSHD is generally based on the sizing and haplotyping of the D4Z4 repeat on chromosome 4 by Southern blotting (SB), molecular combing or single-molecule optical mapping, which is usually straight forward but can be complicated by atypical rearrangements of the D4Z4 repeat. One of these rearrangements is a D4Z4 proximally extended deletion (DPED) allele, where not only the D4Z4 repeat is partially deleted, but also sequences immediately proximal to the repeat are lost, which can impede accurate diagnosis in all genetic methods. Previously, we identified several DPED alleles in FSHD and estimated the size of the proximal deletions by a complex pulsed-field gel electrophoresis and SB strategy. Here, using the next-generation sequencing, we have defined the breakpoint junctions of these DPED alleles at the base pair resolution in 12 FSHD families and 4 control individuals facilitating a PCR-based diagnosis of these DPED alleles. Our resultsshow that half of the DPED alleles are derivates of an ancient founder allele. For some DPED alleles, we found that genetic elements are deleted such as DUX4c, FRG2, DBE-T and myogenic enhancers necessitating re-evaluation of their role in FSHD pathogenesis.


Assuntos
Distrofia Muscular Facioescapuloumeral , Alelos , Cromatina , Cromossomos Humanos Par 4/genética , Efeito Fundador , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo
2.
J Med Genet ; 59(9): 895-905, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34750192

RESUMO

BACKGROUND: Auriculocondylar syndrome (ARCND) is a rare genetic disease that affects structures derived from the first and second pharyngeal arches, mainly resulting in micrognathia and auricular malformations. To date, pathogenic variants have been identified in three genes involved in the EDN1-DLX5/6 pathway (PLCB4, GNAI3 and EDN1) and some cases remain unsolved. Here we studied a large unsolved four-generation family. METHODS: We performed linkage analysis, resequencing and Capture-C to investigate the causative variant of this family. To test the pathogenicity of the CNV found, we modelled the disease in patient craniofacial progenitor cells, including induced pluripotent cell (iPSC)-derived neural crest and mesenchymal cells. RESULTS: This study highlights a fourth locus causative of ARCND, represented by a tandem duplication of 430 kb in a candidate region on chromosome 7 defined by linkage analysis. This duplication segregates with the disease in the family (LOD score=2.88) and includes HDAC9, which is located over 200 kb telomeric to the top candidate gene TWIST1. Notably, Capture-C analysis revealed multiple cis interactions between the TWIST1 promoter and possible regulatory elements within the duplicated region. Modelling of the disease revealed an increased expression of HDAC9 and its neighbouring gene, TWIST1, in neural crest cells. We also identified decreased migration of iPSC-derived neural crest cells together with dysregulation of osteogenic differentiation in iPSC-affected mesenchymal stem cells. CONCLUSION: Our findings support the hypothesis that the 430 kb duplication is causative of the ARCND phenotype in this family and that deregulation of TWIST1 expression during craniofacial development can contribute to the phenotype.


Assuntos
Otopatias , Osteogênese , Orelha/anormalidades , Orelha/patologia , Otopatias/genética , Otopatias/patologia , Humanos , Proteínas Nucleares/genética , Sequências Reguladoras de Ácido Nucleico , Proteína 1 Relacionada a Twist/genética
3.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842713

RESUMO

Small non-coding microRNAs (miRNAs) are involved in the regulation of mRNA stability. Their features, including high stability and secretion to biofluids, make them attractive as potential biomarkers for diverse pathologies. This is the first study reporting miRNA as potential biomarkers for oculopharyngeal muscular dystrophy (OPMD), an adult-onset myopathy. We hypothesized that miRNA that is differentially expressed in affected muscles from OPMD patients is secreted to biofluids and those miRNAs could be used as biomarkers for OPMD. We first identified candidate miRNAs from OPMD-affected muscles and from muscles from an OPMD mouse model using RNA sequencing. We then compared the OPMD-deregulated miRNAs to the literature and, subsequently, we selected a few candidates for expression studies in serum and saliva biofluids using qRT-PCR. We identified 126 miRNAs OPMD-deregulated in human muscles, but 36 deregulated miRNAs in mice only (pFDR < 0.05). Only 15 OPMD-deregulated miRNAs overlapped between the in humans and mouse studies. The majority of the OPMD-deregulated miRNAs showed opposite deregulation direction compared with known muscular dystrophies miRNAs (myoMirs), which are associated. In contrast, similar dysregulation direction was found for 13 miRNAs that are common between OPMD and aging muscles. A significant age-association (p < 0.05) was found for 17 OPMD-deregulated miRNAs (13.4%), whereas in controls, only six miRNAs (1.4%) showed a significant age-association, suggesting that miRNA expression in OPMD is highly age-associated. miRNA expression in biofluids revealed that OPMD-associated deregulation in saliva was similar to that in muscles, but not in serum. The same as in muscle, miRNA expression levels in saliva were also found to be associated with age (p < 0.05). Moreover, the majority of OPMD-miRNAs were found to be associated with dysphagia as an initial symptom. We suggest that levels of specific miRNAs in saliva can mark muscle degeneration in general and dysphagia in OPMD.


Assuntos
MicroRNAs/genética , Distrofia Muscular Oculofaríngea/genética , Saliva/fisiologia , Adulto , Fatores Etários , Idoso , Animais , Biomarcadores , Estudos de Casos e Controles , Transtornos de Deglutição/genética , Modelos Animais de Doenças , Expressão Gênica , Humanos , MicroRNAs/análise , MicroRNAs/sangue , Músculo Esquelético/fisiopatologia , Distrofia Muscular Oculofaríngea/etiologia , Análise de Sequência de RNA
4.
Nature ; 501(7468): 506-11, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24037378

RESUMO

Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project--the first uniformly processed high-throughput RNA-sequencing data from multiple human populations with high-quality genome sequences. We discover extremely widespread genetic variation affecting the regulation of most genes, with transcript structure and expression level variation being equally common but genetically largely independent. Our characterization of causal regulatory variation sheds light on the cellular mechanisms of regulatory and loss-of-function variation, and allows us to infer putative causal variants for dozens of disease-associated loci. Altogether, this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of functional variants in the human genome.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Transcriptoma/genética , Alelos , Linhagem Celular Transformada , Éxons/genética , Perfilação da Expressão Gênica , Humanos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , RNA Mensageiro/análise , RNA Mensageiro/genética
5.
Cell Mol Life Sci ; 75(20): 3857-3875, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29808415

RESUMO

The release and uptake of nano-sized extracellular vesicles (EV) is a highly conserved means of intercellular communication. The molecular composition of EV, and thereby their signaling function to target cells, is regulated by cellular activation and differentiation stimuli. EV are regarded as snapshots of cells and are, therefore, in the limelight as biomarkers for disease. Although research on EV-associated RNA has predominantly focused on microRNAs, the transcriptome of EV consists of multiple classes of small non-coding RNAs with potential gene-regulatory functions. It is not known whether environmental cues imposed on cells induce specific changes in a broad range of EV-associated RNA classes. Here, we investigated whether immune-activating or -suppressing stimuli imposed on primary dendritic cells affected the release of various small non-coding RNAs via EV. The small RNA transcriptomes of highly pure EV populations free from ribonucleoprotein particles were analyzed by RNA sequencing and RT-qPCR. Immune stimulus-specific changes were found in the miRNA, snoRNA, and Y-RNA content of EV from dendritic cells, whereas tRNA and snRNA levels were much less affected. Only part of the changes in EV-RNA content reflected changes in cellular RNA, which urges caution in interpreting EV as snapshots of cells. By comprehensive analysis of RNA obtained from highly purified EV, we demonstrate that multiple RNA classes contribute to genetic messages conveyed via EV. The identification of multiple RNA classes that display cell stimulation-dependent association with EV is the prelude to unraveling the function and biomarker potential of these EV-RNAs.


Assuntos
Células Dendríticas/metabolismo , Vesículas Extracelulares/genética , Transcriptoma , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Colecalciferol/farmacologia , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Corantes Fluorescentes/química , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Microscopia Eletrônica , Nanopartículas/química , RNA Nucleolar Pequeno/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/isolamento & purificação , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/metabolismo , Análise de Sequência de RNA
6.
Hum Mutat ; 38(3): 310-316, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28044414

RESUMO

Cytochrome P450 2D6 (CYP2D6) is among the most important genes involved in drug metabolism. Specific variants are associated with changes in the enzyme's amount and activity. Multiple technologies exist to determine these variants, like the AmpliChip CYP450 test, Taqman qPCR, or Second-Generation Sequencing, however, sequence homology between cytochrome P450 genes and pseudogene CYP2D7 impairs reliable CYP2D6 genotyping, and variant phasing cannot accurately be determined using these assays. To circumvent this, we sequenced CYP2D6 using the Pacific Biosciences RSII and obtained high-quality, full-length, phased CYP2D6 sequences, enabling accurate variant calling and haplotyping of the entire gene-locus including exonic, intronic, and upstream and downstream regions. Unphased diplotypes (Roche AmpliChip CYP450 test) were confirmed for 24 of the 25 samples, including gene duplications. Cases with gene deletions required additional specific assays to resolve. In total, 61 unique variants were detected, including variants that had not previously been associated with specific haplotypes. To further aid genomic analysis using standard reference sequences, we have established an LOVD-powered CYP2D6 gene-variant database, and added all reference haplotypes and data reported here. We conclude that our CYP2D6 genotyping approach produces reliable CYP2D6 diplotypes and reveals information about additional variants, including phasing and copy-number variation.


Assuntos
Citocromo P-450 CYP2D6/genética , Variação Genética , Análise de Sequência de DNA , Variações do Número de Cópias de DNA , Deleção de Genes , Duplicação Gênica , Genótipo , Humanos , Translocação Genética
7.
Hum Mutat ; 38(7): 870-879, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28378423

RESUMO

A genetic diagnosis of autosomal-dominant polycystic kidney disease (ADPKD) is challenging due to allelic heterogeneity, high GC content, and homology of the PKD1 gene with six pseudogenes. Short-read next-generation sequencing approaches, such as whole-genome sequencing and whole-exome sequencing, often fail at reliably characterizing complex regions such as PKD1. However, long-read single-molecule sequencing has been shown to be an alternative strategy that could overcome PKD1 complexities and discriminate between homologous regions of PKD1 and its pseudogenes. In this study, we present the increased power of resolution for complex regions using long-read sequencing to characterize a cohort of 19 patients with ADPKD. Our approach provided high sensitivity in identifying PKD1 pathogenic variants, diagnosing 94.7% of the patients. We show that reliable screening of ADPKD patients in a single test without interference of PKD1 homologous sequences, commonly introduced by residual amplification of PKD1 pseudogenes, by direct long-read sequencing is now possible. This strategy can be implemented in diagnostics and is highly suitable to sequence and resolve complex genomic regions that are of clinical relevance.


Assuntos
Doenças Renais Policísticas/genética , Canais de Cátion TRPP/genética , Alelos , Estudos de Coortes , Biblioteca Gênica , Testes Genéticos , Genótipo , Humanos , Perda de Heterozigosidade , Rim Policístico Autossômico Dominante/genética , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Pseudogenes , Análise de Sequência de DNA
8.
BMC Genomics ; 18(1): 331, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28449654

RESUMO

BACKGROUND: Parasitoid resistance in Drosophila varies considerably, among and within species. An immune response, lamellocyte-mediated encapsulation, evolved in a subclade of Drosophila and was subsequently lost in at least one species within this subclade. While the mechanisms of resistance are fairly well documented in D. melanogaster, much less is known for closely related species. Here, we studied the inter- and intra-species variation in gene expression after parasitoid attack in Drosophila. We used RNA-seq after parasitization of four closely related Drosophila species of the melanogaster subgroup and replicated lines of D. melanogaster experimentally selected for increased resistance to gain insights into short- and long-term evolutionary changes. RESULTS: We found a core set of genes that are consistently up-regulated after parasitoid attack in the species and lines tested, regardless of their level of resistance. Another set of genes showed no up-regulation or expression in D. sechellia, the species unable to raise an immune response against parasitoids. This set consists largely of genes that are lineage-restricted to the melanogaster subgroup. Artificially selected lines did not show significant differences in gene expression with respect to non-selected lines in their responses to parasitoid attack, but several genes showed differential exon usage. CONCLUSIONS: We showed substantial similarities, but also notable differences, in the transcriptional responses to parasitoid attack among four closely related Drosophila species. In contrast, within D. melanogaster, the responses were remarkably similar. We confirmed that in the short-term, selection does not act on a pre-activation of the immune response. Instead it may target alternative mechanisms such as differential exon usage. In the long-term, we found support for the hypothesis that the ability to immunologically resist parasitoid attack is contingent on new genes that are restricted to the melanogaster subgroup.


Assuntos
Drosophila/genética , Drosophila/parasitologia , Perfilação da Expressão Gênica , Genômica , Interações Hospedeiro-Parasita , Vespas/fisiologia , Animais , Evolução Molecular , Genes de Insetos/genética , Anotação de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
9.
Bioinformatics ; 30(12): 1651-9, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24532718

RESUMO

MOTIVATION: Advances in sequencing technologies and computational algorithms have enabled the study of genomic variants to dissect their functional consequence. Despite this unprecedented progress, current tools fail to reliably detect and characterize more complex allelic variants, such as short tandem repeats (STRs). We developed TSSV as an efficient and sensitive tool to specifically profile all allelic variants present in targeted loci. Based on its design, requiring only two short flanking sequences, TSSV can work without the use of a complete reference sequence to reliably profile highly polymorphic, repetitive or uncharacterized regions. RESULTS: We show that TSSV can accurately determine allelic STR structures in mixtures with 10% representation of minor alleles or complex mixtures in which a single STR allele is shared. Furthermore, we show the universal utility of TSSV in two other independent studies: characterizing de novo mutations introduced by transcription activator-like effector nucleases (TALENs) and profiling the noise and systematic errors in an IonTorrent sequencing experiment. TSSV complements the existing tools by aiding the study of highly polymorphic and complex regions and provides a high-resolution map that can be used in a wide range of applications, from personal genomics to forensic analysis and clinical diagnostics. AVAILABILITY AND IMPLEMENTATION: We have implemented TSSV as a Python package that can be installed through the command-line using pip install TSSV command. Its source code and documentation are available at https://pypi.python.org/pypi/tssv and http://www.lgtc.nl/tssv.


Assuntos
Alelos , Genômica/métodos , Repetições de Microssatélites , Software , Algoritmos , Desoxirribonucleases/metabolismo , Distrofina/genética , Feminino , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Análise de Sequência de DNA
10.
Exp Cell Res ; 327(2): 297-306, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24836851

RESUMO

Recent methodological advances have improved the ease and efficiency of generating human induced pluripotent stem cells (hiPSCs), but this now typically results in a greater number of hiPSC clones being derived than can be wholly characterized. It is therefore imperative that methods are developed which facilitate rapid selection of hiPSC clones most suited for the downstream research aims. Here we describe a combination of procedures enabling the simultaneous screening of multiple clones to determine their genomic integrity as well as their cardiac differentiation potential within two weeks of the putative reprogrammed colonies initially appearing. By coupling splinkerette-PCR with Ion Torrent sequencing, we could ascertain the number and map the proviral integration sites in lentiviral-reprogrammed hiPSCs. In parallel, we developed an effective cardiac differentiation protocol that generated functional cardiomyocytes within 10 days without requiring line-specific optimization for any of the six independent human pluripotent stem cell lines tested. Finally, to demonstrate the scalable potential of these procedures, we picked 20 nascent iPSC clones and performed these independent assays concurrently. Before the clones required passaging, we were able to identify clones with a single integrated copy of the reprogramming vector and robust cardiac differentiation potential for further analysis.


Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Provírus/genética , Integração Viral/genética , Southern Blotting , Proliferação de Células , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Derme/citologia , Derme/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Imunofluorescência , Ensaios de Triagem em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo
11.
Nucleic Acids Res ; 41(15): e146, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23771142

RESUMO

Current microRNA target predictions are based on sequence information and empirically derived rules but do not make use of the expression of microRNAs and their targets. This study aimed to improve microRNA target predictions in a given biological context, using in silico predictions, microRNA and mRNA expression. We used target prediction tools to produce lists of predicted targets and used a gene set test designed to detect consistent effects of microRNAs on the joint expression of multiple targets. In a single test, association between microRNA expression and target gene set expression as well as the contribution of the individual target genes on the association are determined. The strongest negatively associated mRNAs as measured by the test were prioritized. We applied our integration method to a well-defined muscle differentiation model. Validation of our predictions in C2C12 cells confirmed predicted targets of known as well as novel muscle-related microRNAs. We further studied associations between microRNA-mRNA pairs in human prostate cancer, finding some pairs that have been recently experimentally validated by others. Using the same study, we showed the advantages of the global test over Pearson correlation and lasso. We conclude that our integrated approach successfully identifies regulated microRNAs and their targets.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/análise , Mioblastos Esqueléticos/metabolismo , RNA Mensageiro/análise , Software , Regiões 3' não Traduzidas , Algoritmos , Animais , Diferenciação Celular , Humanos , Masculino , Camundongos , MicroRNAs/genética , Mioblastos Esqueléticos/citologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , Transcriptoma
12.
Nucleic Acids Res ; 40(18): 9272-85, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22821563

RESUMO

Cells release RNA-carrying vesicles and membrane-free RNA/protein complexes into the extracellular milieu. Horizontal vesicle-mediated transfer of such shuttle RNA between cells allows dissemination of genetically encoded messages, which may modify the function of target cells. Other studies used array analysis to establish the presence of microRNAs and mRNA in cell-derived vesicles from many sources. Here, we used an unbiased approach by deep sequencing of small RNA released by immune cells. We found a large variety of small non-coding RNA species representing pervasive transcripts or RNA cleavage products overlapping with protein coding regions, repeat sequences or structural RNAs. Many of these RNAs were enriched relative to cellular RNA, indicating that cells destine specific RNAs for extracellular release. Among the most abundant small RNAs in shuttle RNA were sequences derived from vault RNA, Y-RNA and specific tRNAs. Many of the highly abundant small non-coding transcripts in shuttle RNA are evolutionary well-conserved and have previously been associated to gene regulatory functions. These findings allude to a wider range of biological effects that could be mediated by shuttle RNA than previously expected. Moreover, the data present leads for unraveling how cells modify the function of other cells via transfer of specific non-coding RNA species.


Assuntos
Pequeno RNA não Traduzido/análise , Vesículas Transportadoras/química , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/química , Células Dendríticas/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/análise , MicroRNAs/química , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/fisiologia , RNA de Transferência/análise , RNA de Transferência/química , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de RNA , Linfócitos T/química , Linfócitos T/imunologia
13.
Cell Mol Life Sci ; 69(8): 1377-89, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22130515

RESUMO

A key step in heart development is the coordinated development of the atrioventricular canal (AVC), the constriction between the atria and ventricles that electrically and physically separates the chambers, and the development of the atrioventricular valves that ensure unidirectional blood flow. Using knock-out and inducible overexpression mouse models, we provide evidence that the developmentally important T-box factors Tbx2 and Tbx3, in a functionally redundant manner, maintain the AVC myocardium phenotype during the process of chamber differentiation. Expression profiling and ChIP-sequencing analysis of Tbx3 revealed that it directly interacts with and represses chamber myocardial genes, and induces the atrioventricular pacemaker-like phenotype by activating relevant genes. Moreover, mutant mice lacking 3 or 4 functional alleles of Tbx2 and Tbx3 failed to form atrioventricular cushions, precursors of the valves and septa. Tbx2 and Tbx3 trigger development of the cushions through a regulatory feed-forward loop with Bmp2, thus providing a mechanism for the co-localization and coordination of these important processes in heart development.


Assuntos
Coxins Endocárdicos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Domínio T/metabolismo , Animais , Sequência de Bases , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Coxins Endocárdicos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Miocárdio/metabolismo , Ratos , Proteínas com Domínio T/genética , Regulação para Cima
15.
Circ Res ; 105(1): 61-9, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19498200

RESUMO

The atrioventricular (AV) node is a recurrent source of potentially life-threatening arrhythmias. Nevertheless, limited data are available on its developmental control or molecular phenotype. We used a novel AV nodal myocardium-specific reporter mouse to gain insight into the gene programs determining the formation and phenotype of the developing AV node. In this reporter, green fluorescent protein (GFP) expression was driven by a 160-kbp bacterial artificial chromosome with Tbx3 and flanking sequences. GFP was selectively active in the AV canal of embryos and AV node of adults, whereas the Tbx3-positive AV bundle and sinus node were devoid of GFP, demonstrating that distinct regulatory sequences and pathways control expression in the components of the conduction system. Fluorescent AV nodal and complementary Nppa-positive chamber myocardial cell populations of embryonic day 10.5 embryos and of embryonic day 17.5 fetuses were purified using fluorescence-activated cell sorting, and their expression profiles were assessed by genome-wide microarray analysis, providing valuable information concerning their molecular identities. We constructed a comprehensive list of sodium, calcium, and potassium channel genes specific for developing nodal or chamber myocardium. Furthermore, the data revealed that the AV node and the chamber (working) myocardium phenotypes diverge during development but that the functional gene classes characterizing both subtypes are maintained. One of the repertoires identified in the AV node-specific gene profiles consists of multiple neurotrophic factors and semaphorins, not yet appreciated to play a role in nodal development, revealing shared characteristics between nodal and nervous system development.


Assuntos
Nó Atrioventricular , Perfilação da Expressão Gênica/métodos , Proteínas com Domínio T/genética , Animais , Canais de Cálcio/genética , Cromossomos Artificiais Bacterianos , Embrião de Mamíferos , Genes Reporter , Proteínas de Fluorescência Verde , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Canais de Sódio/genética
16.
Int J Lab Hematol ; 43(6): 1628-1634, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34251753

RESUMO

INTRODUCTION: The high-sequence homology of the α-globin-gene cluster is responsible for microhomology-mediated recombination events during meiosis, resulting in a high density of deletion breakpoints within a 10 kb region. Commonly used deletion detection methods, such as multiplex ligation-dependent probe amplification (MLPA) and Southern blot, cannot exactly define the breakpoints. This typically requires long-range PCR, which is not always successful. Targeted locus amplification (TLA) is a targeted enrichment method that can be used to sequence up to 70 kb of neighboring DNA sequences without prior knowledge about the target site. METHODS: Genomic DNA (gDNA) TLA is a technique that folds isolated DNA, ensuring that adjacent loci are in a close spatial proximity. Subsequent digestion and religation form DNA circles that are amplified using fragment-specific inverse primers, creating a library that is suitable for Illumina sequencing. RESULTS: Here, we describe the characterization of a rare 16 771 bp deletion, utilizing gDNA TLA with a single inverse PCR primer set on one end of the breakpoint. Primers for breakpoint PCR were designed to confirm the deletion breakpoints and were consequently used to characterize the same deletion in 10 additional carriers sharing comparable hematologic data and similar MLPA results. CONCLUSIONS: The gDNA TLA technology was successfully used to identify deletion breakpoints within the alpha-globin cluster. The deletion was described only once in an earlier study as the --gb , but as it was not registered correctly in the available databases, it was not initially recognized as such.


Assuntos
Alelos , Pontos de Quebra do Cromossomo , Deleção de Sequência , alfa-Globinas/genética , Talassemia alfa/diagnóstico , Talassemia alfa/genética , Testes Genéticos , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase , Talassemia alfa/sangue
17.
BMC Genomics ; 11: 716, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21171994

RESUMO

BACKGROUND: MicroRNAs are small non-coding RNA transcripts that regulate post-transcriptional gene expression. The millions of short sequence reads generated by next generation sequencing technologies make this technique explicitly suitable for profiling of known and novel microRNAs. A modification to the small-RNA expression kit (SREK, Ambion) library preparation method for the SOLiD sequencing platform is described to generate microRNA sequencing libraries that are compatible with the Illumina Genome Analyzer. RESULTS: High quality sequencing libraries can successfully be prepared from as little as 100 ng small RNA enriched RNA. An easy to use perl-based analysis pipeline called E-miR was developed to handle the sequencing data in several automated steps including data format conversion, 3' adapter removal, genome alignment and annotation to non-coding RNA transcripts. The sample preparation and E-miR pipeline were used to identify 37 cardiac enriched microRNAs in stage 16 chicken embryos. Isomir expression profiles between the heart and embryo were highly correlated for all miRNAs suggesting that tissue or cell specific miRNA modifications do not occur. CONCLUSIONS: In conclusion, our alternative sample preparation method can successfully be applied to generate high quality miRNA sequencing libraries for the Illumina genome analyzer.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Análise de Sequência de RNA/métodos , Animais , Sequência de Bases , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Eur J Hum Genet ; 27(3): 400-407, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30455479

RESUMO

Short tandem repeats (STRs) are scattered throughout the human genome. Some STRs, like trinucleotide repeat expansion (TRE) variants, cause hereditable disorders. Unambiguous molecular diagnostics of TRE disorders is hampered by current technical limitations imposed by traditional PCR and DNA sequencing methods. Here we report a novel pipeline for TRE variant diagnosis employing the massively parallel sequencing (MPS) combined with an opensource software package (FDSTools), which together are designed to distinguish true STR sequences from STR sequencing artifacts. We show that this approach can improve TRE diagnosis, such as Oculopharyngeal muscular dystrophy (OPMD). OPMD is caused by a trinucleotide expansion in the PABPN1 gene. A short GCN expansion, (GCN[10]), coding for a 10 alanine repeat is not pathogenic, but an alanine expansion is pathogenic. Applying this novel procedure in  a Dutch OPMD patient cohort, we found expansion variants from GCN[11] to GCN[16], with the GCN[16] as the most abundant variant. The repeat expansion length did not correlate with clinical features. However, symptom severity was found to correlate with age and with the initial affected muscles, suggesting that aging and muscle-specific factors can play a role in modulating OPMD.


Assuntos
Testes Genéticos/métodos , Distrofia Muscular Oculofaríngea/genética , Análise de Sequência de DNA/métodos , Expansão das Repetições de Trinucleotídeos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Loci Gênicos , Humanos , Lactente , Masculino , Distrofia Muscular Oculofaríngea/diagnóstico , Taxa de Mutação
19.
Front Immunol ; 9: 1829, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186282

RESUMO

Human lymphoid tissues harbor, in addition to CD56bright and CD56dim natural killer (NK) cells, a third NK cell population: CD69+CXCR6+ lymphoid tissue (lt)NK cells. The function and development of ltNK cells remain poorly understood. In this study, we performed RNA sequencing on the three NK cell populations derived from bone marrow (BM) and blood. In ltNK cells, 1,353 genes were differentially expressed compared to circulating NK cells. Several molecules involved in migration were downregulated in ltNK cells: S1PR1, SELPLG and CD62L. By flow cytometry we confirmed that the expression profile of adhesion molecules (CD49e-, CD29low, CD81high, CD62L-, CD11c-) and transcription factors (Eomeshigh, Tbetlow) of ltNK cells differed from their circulating counterparts. LtNK cells were characterized by enhanced expression of inhibitory receptors TIGIT and CD96 and low expression of DNAM1 and cytolytic molecules (GZMB, GZMH, GNLY). Their proliferative capacity was reduced compared to the circulating NK cells. By performing gene set enrichment analysis, we identified DUSP6 and EGR2 as potential regulators of the ltNK cell transcriptome. Remarkably, comparison of the ltNK cell transcriptome to the published human spleen-resident memory CD8+ T (Trm) cell transcriptome revealed an overlapping gene signature. Moreover, the phenotypic profile of ltNK cells resembled that of CD8+ Trm cells in BM. Together, we provide transcriptional and phenotypic data that clearly distinguish ltNK cells from both the CD56bright and CD56dim NK cells and substantiate the view that ltNK cells are tissue-resident cells, which are functionally restrained in killing and have low proliferative activity.


Assuntos
Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Transcriptoma , Biomarcadores , Biologia Computacional/métodos , Citotoxicidade Imunológica , Perfilação da Expressão Gênica , Humanos , Memória Imunológica , Imunofenotipagem , Especificidade de Órgãos/imunologia , Fenótipo
20.
Nat Biotechnol ; 36(8): 746-757, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30010675

RESUMO

RNA-seq is increasingly used for quantitative profiling of small RNAs (for example, microRNAs, piRNAs and snoRNAs) in diverse sample types, including isolated cells, tissues and cell-free biofluids. The accuracy and reproducibility of the currently used small RNA-seq library preparation methods have not been systematically tested. Here we report results obtained by a consortium of nine labs that independently sequenced reference, 'ground truth' samples of synthetic small RNAs and human plasma-derived RNA. We assessed three commercially available library preparation methods that use adapters of defined sequence and six methods using adapters with degenerate bases. Both protocol- and sequence-specific biases were identified, including biases that reduced the ability of small RNA-seq to accurately measure adenosine-to-inosine editing in microRNAs. We found that these biases were mitigated by library preparation methods that incorporate adapters with degenerate bases. MicroRNA relative quantification between samples using small RNA-seq was accurate and reproducible across laboratories and methods.


Assuntos
MicroRNAs/genética , Análise de Sequência de RNA/métodos , Adenosina/genética , Humanos , Inosina/genética , MicroRNAs/sangue , MicroRNAs/normas , Edição de RNA , Padrões de Referência , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA