Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915555

RESUMO

LMNA -Related Dilated Cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C ( LMNA ) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. Molecular mechanisms of disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA -Related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (4 Patient and 8 Control) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for Cardiac Progenitors to Cardiomyocytes (CM) and Epicardium-Derived Cells (EPDC). Data integration and comparative analyses of Patient and Control cells found cell type and lineage differentially expressed genes (DEG) with enrichment to support pathway dysregulation. Top DEG and enriched pathways included: 10 ZNF genes and RNA polymerase II transcription in Pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CM; LMNA and epigenetic regulation and DDIT4 and mTORC1 signaling in EPDC. Top DEG also included: XIST and other X-linked genes, six imprinted genes: SNRPN , PWAR6 , NDN , PEG10 , MEG3 , MEG8 , and enriched gene sets in metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model.

2.
Cells ; 12(17)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37681853

RESUMO

Cardiomyocyte loss following myocardial infarction cannot be addressed with current clinical therapies. Cell therapy with induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is a potential approach to replace cardiomyocyte loss. However, engraftment rates in pre-clinical studies have been low, highlighting a need to refine current iPSC-CM technology. In this study, we demonstrated that inducing Yes-associated protein (YAP) by genetic and pharmacological approaches resulted in increased iPSC-CM proliferation and reduced apoptosis in response to oxidative stress. Interestingly, iPSC-CM maturation was differently affected by each strategy, with genetic activation of YAP resulting in a more immature cardiomyocyte-like phenotype not witnessed upon pharmacological YAP activation. Overall, we conclude that YAP activation in iPSC-CMs enhances cell survival and proliferative capacity. Therefore, strategies targeting YAP, or its upstream regulator the Hippo signalling pathway, could potentially be used to improve the efficacy of iPSC-CM technology for use as a future regenerative therapy in myocardial infarction.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Humanos , Miócitos Cardíacos , Apoptose , Infarto do Miocárdio/terapia , Proliferação de Células
3.
ACS Mater Au ; 3(6): 600-619, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38089666

RESUMO

Over the past decade, the therapeutic potential of nanomaterials as novel drug delivery systems complementing conventional pharmacology has been widely acknowledged. Among these nanomaterials, lipid-based nanoparticles (LNPs) have shown remarkable pharmacological performance and promising therapeutic outcomes, thus gaining substantial interest in preclinical and clinical research. In this review, we introduce the main types of LNPs used in drug formulations such as liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, and lipid polymer hybrid nanoparticles, focusing on their main physicochemical properties and therapeutic potential. We discuss computational studies and modeling techniques to enhance the understanding of how LNPs interact with therapeutic cargo and to predict the potential effectiveness of such interactions in therapeutic applications. We also analyze the benefits and drawbacks of various LNP production techniques such as nanoprecipitation, emulsification, evaporation, thin film hydration, microfluidic-based methods, and an impingement jet mixer. Additionally, we discuss the major challenges associated with industrial development, including stability and sterilization, storage, regulatory compliance, reproducibility, and quality control. Overcoming these challenges and facilitating regulatory compliance represent the key steps toward LNP's successful commercialization and translation into clinical settings.

4.
JACC Basic Transl Sci ; 7(9): 859-875, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36317138

RESUMO

Induction of endogenous regenerative capacity has emerged as one promising approach to repair damaged hearts following myocardial infarction (MI). Re-expression of factors that are exclusively expressed during embryonic development may reactivate the ability of adult cardiomyocytes to regenerate. Here, we identified miR-411 as a potent inducer of cardiomyocyte proliferation. Overexpression of miR-411 in the heart significantly increased cardiomyocyte proliferation and survival in a model MI. We found that miR-411 enhances the activity of YAP, the main downstream effector of the Hippo pathway, in cardiomyocytes. In conclusion, miR-411 induces cardiomyocyte regeneration and improves cardiac function post-MI likely by modulating the Hippo/YAP pathway.

5.
Front Cell Dev Biol ; 8: 587776, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195245

RESUMO

BACKGROUND: The therapeutic capacity of mesenchymal stem cells (also known as mesenchymal stromal cells/MSCs) depends on their ability to respond to the need of the damaged tissue by secreting beneficial paracrine factors. MSCs can be genetically engineered to express certain beneficial factors. The aim of this systematic review is to compile and analyze published scientific literatures that report the use of engineered MSCs for the treatment of various diseases/conditions, to discuss the mechanisms of action, and to assess the efficacy of engineered MSC treatment. METHODS: We retrieved all published studies in PubMed/MEDLINE and Cochrane Library on July 27, 2019, without time restriction using the following keywords: "engineered MSC" and "therapy" or "manipulated MSC" and "therapy." In addition, relevant articles that were found during full text search were added. We identified 85 articles that were reviewed in this paper. RESULTS: Of the 85 articles reviewed, 51 studies reported the use of engineered MSCs to treat tumor/cancer/malignancy/metastasis, whereas the other 34 studies tested engineered MSCs in treating non-tumor conditions. Most of the studies reported the use of MSCs in animal models, with only one study reporting a trial in human subjects. Thirty nine studies showed that the expression of beneficial paracrine factors would significantly enhance the therapeutic effects of the MSCs, whereas thirty three studies showed moderate effects, and one study in humans reported no effect. The mechanisms of action for MSC-based cancer treatment include the expression of "suicide genes," induction of tumor cell apoptosis, and delivery of cytokines to induce an immune response against cancer cells. In the context of the treatment of non-cancerous diseases, the mechanism described in the reviewed papers included the expression of angiogenic, osteogenic, and growth factors. CONCLUSION: The therapeutic capacity of MSCs can be enhanced by inducing the expression of certain paracrine factors by genetic modification. Genetically engineered MSCs have been used successfully in various animal models of diseases. However, the results should be interpreted cautiously because animal models might not perfectly represent real human diseases. Therefore, further studies are needed to explore the translational potential of genetically engineered MSCs.

6.
Br J Pharmacol ; 176(20): 3956-3971, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31328787

RESUMO

BACKGROUND AND PURPOSE: The Hippo pathway has emerged as a potential therapeutic target to control pathological cardiac remodelling. The core components of the Hippo pathway, mammalian Ste-20 like kinase 1 (Mst1) and mammalian Ste-20 like kinase 2 (Mst2), modulate cardiac hypertrophy, apoptosis, and fibrosis. Here, we study the effects of pharmacological inhibition of Mst1/2 using a novel inhibitor XMU-MP-1 in controlling the adverse effects of pressure overload-induced hypertrophy. EXPERIMENTAL APPROACH: We used cultured neonatal rat cardiomyocytes (NRCM) and C57Bl/6 mice with transverse aortic constriction (TAC) as in vitro and in vivo models, respectively, to test the effects of XMU-MP-1 treatment. We used luciferase reporter assays, western blots and immunofluorescence assays in vitro, with echocardiography, qRT-PCR and immunohistochemical methods in vivo. KEY RESULTS: XMU-MP-1 treatment significantly increased activity of the Hippo pathway effector yes-associated protein and inhibited phenylephrine-induced hypertrophy in NRCM. XMU-MP-1 improved cardiomyocyte survival and reduced apoptosis following oxidative stress. In vivo, mice 3 weeks after TAC, were treated with XMU-MP-1 (1 mg·kg-1 ) every alternate day for 10 further days. XMU-MP-1-treated mice showed better cardiac contractility than vehicle-treated mice. Cardiomyocyte cross-sectional size and expression of the hypertrophic marker, brain natriuretic peptide, were reduced in XMU-MP-1-treated mice. Improved heart function in XMU-MP-1-treated mice with TAC, was accompanied by fewer TUNEL positive cardiomyocytes and lower levels of fibrosis, suggesting inhibition of cardiomyocyte apoptosis and decreased fibrosis. CONCLUSIONS AND IMPLICATIONS: The Hippo pathway inhibitor, XMU-MP-1, reduced cellular hypertrophy and improved survival in cultured cardiomyocytes and, in vivo, preserved cardiac function following pressure overload.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Via de Sinalização Hippo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Pressão , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Sulfonamidas/química , Benzenossulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA