Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nutr Cancer ; 74(4): 1431-1445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34286635

RESUMO

There is a strong rationale for investigating nutritional interventions with docosahexaenoic acid (DHA) in cancer prevention and therapy; however, the effects of DHA on ovarian cancer (OC) have not been well studied. Here, we investigated if DHA alone and in combination with carboplatin reduces OC cell growth in vitro. In vivo, we used a high-grade serous OC patient-derived xenograft (PDX) mouse model to investigate if DHA affects OC growth and enhances the anticancer actions of carboplatin. We showed synergistic cell killing by DHA and carboplatin in DHA-resistant Kuramochi and SKOV3 OC cells, which corresponded with increased DHA incorporation into whole-cell membrane phospholipids (P < 0.05). In vivo, feeding mice a diet supplemented with 3.9% (w/w of fat) DHA resulted in a significant reduction in PDX growth with and without carboplatin (P < 0.05). This reduction in tumor growth was accompanied by an increased tumor necrotic region (P < 0.05) and improved survival. Plasma membranes in tumors and livers excised from mice fed a DHA diet had ∼ twofold increase in DHA incorporation as compared with mice fed a control diet. Our findings indicate that DHA supplementation reduces cancer cell growth and enhances the efficacy of carboplatin in preclinical models of OC through increased apoptosis and necrosis.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1952453.


Assuntos
Ácidos Docosa-Hexaenoicos , Neoplasias Ovarianas , Animais , Carboplatina/farmacologia , Carcinoma Epitelial do Ovário , Ciclo Celular , Proliferação de Células , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/patologia
2.
Biochim Biophys Acta Mol Cell Res ; 1865(1): 196-208, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29055790

RESUMO

Acquired radioresistance accompanied with increased metastatic potential is a major hurdle in effective radiotherapy of breast cancers. However, the nature of their inter-dependence and the underlying mechanism remains largely intangible. By employing radioresistant (RR) cell lines, we herein demonstrate that MCF-7 RR cells display phenotypic and molecular alterations evocative of epithelial to mesenchymal transition (EMT) with increased traction forces and membrane ruffling culminating in boosted invasiveness. We then show that these changes can be attributed to overexpression of alpha-actinin-4 (ACTN4), with ACTN4 knockdown near-completely abrogating both radioresistance and EMT-associated changes. We further found that in MCF-7 RR cells, ACTN4 mediates the observed effects by activating AKT, and downstream AKT/GSK3ß signalling. Though ACTN4 plays a similar role in mediating radioresistance and invasiveness in MDA-MB-231 RR cells, co-immunoprecipitation studies reveal that these changes are effected through increased association with AKT and not by overexpression of AKT. Taken together, our study identifies ACTN4/AKT/GSK3ß as a novel pathway regulating radioresistance coupled invasion which can be further explored to improve the radiotherapeutic gain.


Assuntos
Actinina/fisiologia , Neoplasias da Mama/patologia , Movimento Celular/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tolerância a Radiação/genética , Actinina/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Células MCF-7 , Invasividade Neoplásica , Transdução de Sinais/genética
3.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 392-405, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29175377

RESUMO

The failure of chemotherapeutic drugs in treatment of various cancers is attributed to the acquisition of drug resistance. However, the migration mechanisms of drug-resistant cancer cells remain incompletely understood. Here we address this question from a biophysical perspective by mapping the phenotypic alterations in ovarian cancer cells (OCCs) resistant to cisplatin and paclitaxel. We show that cisplatin-resistant (CisR), paclitaxel-resistant (PacR) and dual drug-resistant (i.e., resistant to both drugs) OCCs are more contractile and softer than drug-sensitive cells. Protease inhibition suppresses invasion of CisR cells but not of PacR cells, indicative of a protease-dependent mode of migration in CisR cells and a protease-independent mode of migration in PacR. Despite these differences, actomyosin contractility, mediated by the RhoA-ROCK2-Myosin II signaling pathway, regulates both modes of migration. Confined migration experiments establish the role of myosin IIA and IIB in mediating nuclear translocation and regulation of proteolytic activity. Collectively, our results highlight the importance of myosin II as a potential therapeutic target for treatment of drug-resistant ovarian cancer cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Miosina Tipo II/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Miosina Tipo II/genética , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
4.
Nano Lett ; 15(2): 842-8, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25554860

RESUMO

We report biodegradable plasmon resonant liposome gold nanoparticles (LiposAu NPs) capable of killing cancer cells through photothermal therapy. The pharmacokinetic study of LiposAu NPs performed in a small animal model indicates in situ degradation in hepatocytes and further getting cleared through the hepato-biliary and renal route. Further, the therapeutic potential of LiposAu NPs tested in mouse tumor xenograft model using NIR laser (750 nm) illumination resulted in complete ablation of the tumor mass, thus prolonging disease-free survival.


Assuntos
Materiais Biocompatíveis , Ouro/química , Hipertermia Induzida , Lipossomos , Nanopartículas Metálicas/uso terapêutico , Neoplasias/terapia , Fototerapia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Front Cell Dev Biol ; 11: 1270542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020882

RESUMO

Cell cycle checkpoint kinases serve as important therapeutic targets for various cancers. When they are inhibited by small molecules, checkpoint abrogation can induce cell death or further sensitize cancer cells to other genotoxic therapies. Particularly aberrant Cdk1 activation at the G2/M checkpoint by kinase inhibitors causing unscheduled mitotic entry and mitotic arrest was found to lead to DNA damage and cell death selectively in cancer cells. Promising drugs inhibiting kinases like Wee1 (Adavosertib), Wee1+Myt1 (PD166285), ATR (AZD6738) and Chk1 (UCN-01) have been developed, but clinical data has shown variable efficacy for them with poorly understood mechanisms of resistance. Our lab recently identified Myt1 as a predictive biomarker of acquired resistance to the Wee1 kinase inhibitor, Adavosertib. Here, we investigate the role of Myt1 overexpression in promoting resistance to inhibitors (PD166285, UCN-01 and AZD6738) of other kinases regulating cell cycle progression. We demonstrate that Myt1 confers resistance by compensating Cdk1 inhibition in the presence of these different kinase inhibitors. Myt1 overexpression leads to reduced premature mitotic entry and decreased length of mitosis eventually leading to increased survival rates in Adavosertib treated cells. Elevated Myt1 levels also conferred resistance to inhibitors of ATR or Chk1 inhibitor. Our data supports that Myt1 overexpression is a common mechanism by which cancer cells can acquire resistance to a variety of drugs entering the clinic that aim to induce mitotic catastrophe by abrogating the G2/M checkpoint.

6.
Cancer Lett ; 562: 216169, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37061120

RESUMO

Glioblastoma (GB) is a malignant and immune-suppressed brain cancer that remains incurable despite the current standard of care. Radiotherapy is a mainstay of GB treatment, however invasive cancer cells outside the irradiated field and radioresistance preclude complete eradication of GB cells. Oncolytic virus therapy harnesses tumor-selective viruses to spread through and destroy tumors while stimulating antitumor immune responses, and thus has potential for use following radiotherapy. We demonstrate that oncolytic ΔF4LΔJ2R vaccinia virus (VACV) replicates in and induces cytotoxicity of irradiated brain tumor initiating cells in vitro. Importantly, a single 10 Gy dose of radiation combined with ΔF4LΔJ2R VACV produced considerably superior anticancer effects relative to either monotherapy when treating immune-competent orthotopic CT2A-luc mouse models-significantly extending survival and curing the majority of mice. Mice cured by the combination displayed significantly increased survival relative to naïve age-matched controls following intracranial tumor challenge, with some complete rejections. Further, the combination therapy was associated with an increased ratio of CD8+ effector T cells to regulatory T cells compared to either monotherapy. This study validates the use of radiation with an oncolytic ΔF4LΔJ2R VACV to improve treatment of this malignant brain cancer.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Camundongos , Animais , Vírus Oncolíticos/fisiologia , Vaccinia virus/genética , Glioblastoma/terapia , Neoplasias Encefálicas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
7.
Mol Oncol ; 17(9): 1763-1783, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37057706

RESUMO

Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. The standard treatment achieves a median overall survival for GBM patients of only 15 months. Hence, novel therapies based on an increased understanding of the mechanistic underpinnings of GBM are desperately needed. In this study, we show that elevated expression of 28S rRNA (cytosine-C(5))-methyltransferase NSUN5, which methylates cytosine 3782 of 28S rRNA in GBM cells, is strongly associated with the poor survival of GBM patients. Moreover, we demonstrate that overexpression of NSUN5 increases protein synthesis in GBM cells. NSUN5 knockdown decreased protein synthesis, cell proliferation, sphere formation, migration, and resistance to temozolomide in GBM cell lines. NSUN5 knockdown also decreased the number and size of GBM neurospheres in vitro. As a corollary, mice harboring U251 tumors wherein NSUN5 was knocked down survived longer than mice harboring control tumors. Taken together, our results suggest that NSUN5 plays a protumorigenic role in GBM by enabling the enhanced protein synthesis requisite for tumor progression. Accordingly, NSUN5 may be a hitherto unappreciated target for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , RNA , RNA Ribossômico 28S , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Humanos
8.
Front Oncol ; 12: 828684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251998

RESUMO

Cancer cells typically heavily rely on the G2/M checkpoint to survive endogenous and exogenous DNA damage, such as genotoxic stress due to genome instability or radiation and chemotherapy. The key regulator of the G2/M checkpoint, the cyclin-dependent kinase 1 (CDK1), is tightly controlled, including by its phosphorylation state. This posttranslational modification, which is determined by the opposing activities of the phosphatase cdc25 and the kinase Wee1, allows for a more rapid response to cellular stress than via the synthesis or degradation of modulatory interacting proteins, such as p21 or cyclin B. Reducing Wee1 activity results in ectopic activation of CDK1 activity and drives premature entry into mitosis with unrepaired or under-replicated DNA and causing mitotic catastrophe. Here, we review efforts to use small molecule inhibitors of Wee1 for therapeutic purposes, including strategies to combine Wee1 inhibition with genotoxic agents, such as radiation therapy or drugs inducing replication stress, or inhibitors of pathways that show synthetic lethality with Wee1. Furthermore, it become increasingly clear that Wee1 inhibition can also modulate therapeutic immune responses. We will discuss the mechanisms underlying combination treatments identifying both cell intrinsic and systemic anti-tumor activities.

9.
Front Cell Dev Biol ; 8: 597673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490064

RESUMO

Substantial number of breast cancer (BC) patients undergoing radiation therapy (RT) develop local recurrence over time. During RT therapy, cells can gradually acquire resistance implying adaptive radioresistance. Here we probe the mechanisms underlying this acquired resistance by first establishing radioresistant lines using ZR-75-1 and MCF-7 BC cells through repeated exposure to sub-lethal fractionated dose of 2Gy up to 15 fractions. Radioresistance was found to be associated with increased cancer stem cells (CSCs), and elevated EpCAM expression in the cell population. A retrospective analysis of TCGA dataset indicated positive correlation of high EpCAM expression with poor response to RT. Intriguingly, elevated EpCAM expression in the radioresistant CSCs raise the bigger question of how this biomarker expression contributes during radiation treatment in BC. Thereafter, we establish EpCAM overexpressing ZR-75-1 cells (ZR-75-1EpCAM), which conferred radioresistance, increased stemness through enhanced AKT activation and induced a hybrid epithelial/mesenchymal phenotype with enhanced contractility and invasiveness. In line with these observations, orthotopic implantation of ZR-75-1EpCAM cells exhibited faster growth, lesser sensitivity to radiation therapy and increased lung metastasis than baseline ZR-75-1 cells in mice. In summary, this study shows that similar to radioresistant BC cells, EpCAM overexpressing cells show high degree of plasticity and heterogeneity which ultimately induces radioresistant and metastatic behavior of cancer cells, thus aggravating the disease condition.

10.
J Clin Invest ; 129(3): 1329-1344, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645202

RESUMO

We used the cancer-intrinsic property of oncogene-induced DNA damage as the base for a conditional synthetic lethality approach. To target mechanisms important for cancer cell adaptation to genotoxic stress and thereby to achieve cancer cell-specific killing, we combined inhibition of the kinases ATR and Wee1. Wee1 regulates cell cycle progression, whereas ATR is an apical kinase in the DNA-damage response. In an orthotopic breast cancer model, tumor-selective synthetic lethality of the combination of bioavailable ATR and Wee1 inhibitors led to tumor remission and inhibited metastasis with minimal side effects. ATR and Wee1 inhibition had a higher synergistic effect in cancer stem cells than in bulk cancer cells, compensating for the lower sensitivity of cancer stem cells to the individual drugs. Mechanistically, the combination treatment caused cells with unrepaired or under-replicated DNA to enter mitosis leading to mitotic catastrophe. As these inhibitors of ATR and Wee1 are already in phase I/II clinical trials, this knowledge could soon be translated into the clinic, especially as we showed that the combination treatment targets a wide range of tumor cells. Particularly, the antimetastatic effect of combined Wee1/ATR inhibition and the low toxicity of ATR inhibitors compared with Chk1 inhibitors have great clinical potential.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Células-Tronco Neoplásicas/enzimologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Tirosina Quinases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cancer Res ; 79(23): 5971-5985, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31594837

RESUMO

Adavosertib (also known as AZD1775 or MK1775) is a small-molecule inhibitor of the protein kinase Wee1, with single-agent activity in multiple solid tumors, including sarcoma, glioblastoma, and head and neck cancer. Adavosertib also shows promising results in combination with genotoxic agents such as ionizing radiation or chemotherapy. Previous studies have investigated molecular mechanisms of primary resistance to Wee1 inhibition. Here, we investigated mechanisms of acquired resistance to Wee1 inhibition, focusing on the role of the Wee1-related kinase Myt1. Myt1 and Wee1 kinases were both capable of phosphorylating and inhibiting Cdk1/cyclin B, the key enzymatic complex required for mitosis, demonstrating their functional redundancy. Ectopic activation of Cdk1 induced aberrant mitosis and cell death by mitotic catastrophe. Cancer cells with intrinsic adavosertib resistance had higher levels of Myt1 compared with sensitive cells. Furthermore, cancer cells that acquired resistance following short-term adavosertib treatment had higher levels of Myt1 compared with mock-treated cells. Downregulating Myt1 enhanced ectopic Cdk1 activity and restored sensitivity to adavosertib. These data demonstrate that upregulating Myt1 is a mechanism by which cancer cells acquire resistance to adavosertib. SIGNIFICANCE: Myt1 is a candidate predictive biomarker of acquired resistance to the Wee1 kinase inhibitor adavosertib.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proteínas de Ciclo Celular/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Animais , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Proteínas de Membrana/genética , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Pirazóis/uso terapêutico , Pirimidinonas/uso terapêutico , RNA Interferente Pequeno/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Sci Rep ; 8(1): 16673, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420735

RESUMO

Herein we report synthesis, characterization and preclinical applications of a novel hybrid nanomaterial Toco-Photoxil developed using vitamin E modified gold coated poly (lactic-co-glycolic acid) nanoshells incorporating Pgp inhibitor d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) as a highly inert and disintegrable photothermal therapy (PTT) agent. Toco-Photoxil is highly biocompatible, physiologically stable PTT material with an average diameter of 130 nm that shows good passive accumulation (2.3% ID) in solid tumors when delivered systemically. In comparison to its surface modified counterparts such as IR780-Toco-Photoxil, FA-Toco-Photoxil or FA-IR780-Toco-Photoxil accumulation are merely ~0.3% ID, ~0.025% ID and ~0.005% ID in folate receptor (FR) negative and positive tumor model. Further, Toco-Photoxil variants are prepared by tuning the material absorbance either at 750 nm (narrow) or 915 nm (broad) to study optimal therapeutic efficacy in terms of peak broadness and nanomaterial's concentration. Our findings suggest that Toco-Photoxil tuned at 750 nm absorbance is more efficient (P = 0.0097) in preclinical setting. Toco-Photoxil shows complete passiveness in critical biocompatibility test and reasonable body clearance. High tumor specific accumulation from systemic circulation, strong photothermal conversion and a very safe material property in body physiology makes Toco-Photoxil a superior and powerful PTT agent, which may pave its way for fast track clinical trial in future.


Assuntos
Fototerapia/métodos , Vitamina E/química , Animais , Feminino , Ácido Fólico/química , Hemólise , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células NIH 3T3 , Nanopartículas/química , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polímeros/química , Espectrofotometria Infravermelho
13.
Curr Drug Targets ; 16(6): 658-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25483223

RESUMO

Stem cell therapeutics is the future of regenerative medicine in the modern world. Many studies have been instigated with the hope of translating the outcome for the treatment of several disease conditions ranging from heart and neuronal disease to malignancies as grave as cancers. Stem cell therapeutics undoubtedly holds great promise on the front of regenerative medicine, however, the correct distribution and homing of these stem cells to the host site remained blinded until the recent advances in the discipline of molecular imaging. Herein, we discuss the various imaging guidance applied for determination of the proper delivery of various types of stem cell used as therapeutics for various maladies. Additionally, we scrutinize the use of several indirect labeling mechanisms for efficient tagging of the reporter entity for image guidance. Further, the promise of improving patient healthcare has led to the initiation of several clinical trials worldwide. However, in number of the cases, the benefits arrive with a price heavy enough to pose a serious health risk, one such being formation of teratomas. Thus numerous challenges and methodological obstacles must be overcome before their eloquent clinical impact can be realized. Therefore, we also discuss several clinical trials that have taken into consideration the various imaging guided protocols to monitor correct delivery and understand the distribution of therapeutic stem cells in real time.


Assuntos
Rastreamento de Células/métodos , Imagem Molecular/métodos , Transplante de Células-Tronco/métodos , Ensaios Clínicos como Assunto , Genes Reporter , Humanos , Medicina Regenerativa
14.
PLoS One ; 9(5): e96801, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24802416

RESUMO

In anatomic pathology, immunohistochemistry (IHC) serves as a diagnostic and prognostic method for identification of disease markers in tissue samples that directly influences classification and grading the disease, influencing patient management. However, till today over most of the world, pathological analysis of tissue samples remained a time-consuming and subjective procedure, wherein the intensity of antibody staining is manually judged and thus scoring decision is directly influenced by visual bias. This instigated us to design a simple method of automated digital IHC image analysis algorithm for an unbiased, quantitative assessment of antibody staining intensity in tissue sections. As a first step, we adopted the spectral deconvolution method of DAB/hematoxylin color spectra by using optimized optical density vectors of the color deconvolution plugin for proper separation of the DAB color spectra. Then the DAB stained image is displayed in a new window wherein it undergoes pixel-by-pixel analysis, and displays the full profile along with its scoring decision. Based on the mathematical formula conceptualized, the algorithm is thoroughly tested by analyzing scores assigned to thousands (n = 1703) of DAB stained IHC images including sample images taken from human protein atlas web resource. The IHC Profiler plugin developed is compatible with the open resource digital image analysis software, ImageJ, which creates a pixel-by-pixel analysis profile of a digital IHC image and further assigns a score in a four tier system. A comparison study between manual pathological analysis and IHC Profiler resolved in a match of 88.6% (P<0.0001, CI = 95%). This new tool developed for clinical histopathological sample analysis can be adopted globally for scoring most protein targets where the marker protein expression is of cytoplasmic and/or nuclear type. We foresee that this method will minimize the problem of inter-observer variations across labs and further help in worldwide patient stratification potentially benefitting various multinational clinical trial initiatives.


Assuntos
Software , Automação , Biomarcadores Tumorais/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Neoplasias/metabolismo , Neoplasias/patologia
15.
Toxicol Rep ; 1: 1181-1194, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-28962328

RESUMO

To study the post-treatment effects of dietary curcumin on the levels of benzo(a)pyrene [B(a)P]-induced DNA adducts, mice were administered oil or B(a)P and randomized into 7 subgroups after 24 h. One of the subgroups from both the oil and B(a)P groups was killed at 24 h while the remaining 6 subgroups were shifted to powdered control or 0.05% curcumin diet and killed after 24, 72 and 120 h (experiment 1), and 7, 14, and 28 days (experiment 2). Quantitative comparisons of BPDE-DNA nuclear adducts (area and intensity) in immunohistochemically stained lungs and liver sections was carried out by IHC profiler. A time-dependent decrease in the levels of adducts in B(a)P-treated animals was further enhanced by curcumin exposure compared to the levels in time-matched controls. To assess the contribution of apoptosis and cell proliferation in observed curcumin-mediated enhanced decrease of BPDE-DNA adducts, comparative evaluation of apoptosis and cell proliferation markers was undertaken. Results suggested enhancement of B(a)P-induced apoptosis in liver and lungs by curcumin during 24-120 h while no such enhancement was observed at 7-28 days. Results suggest curcumin-mediated enhancement in apoptosis (experiment 1) and adduct dilution (experiment 2) to be the reason for the observed higher decrease of BPDE-DNA adducts.

16.
PLoS One ; 8(1): e54055, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342072

RESUMO

BACKGROUND: Human sodium iodide symporter (hNIS) gene over-expression is under active consideration worldwide as an alternative target molecule for breast cancer (BC) diagnosis and targeted radio-iodine treatment. However, the field demands better stratified analysis of endogenous hNIS expression across major BC subtypes. Therefore, we have analyzed subtype-specific variation of hNIS overexpression in breast tumor tissue samples by immunohistochemistry (IHC) and also report the development of a homogeneous, quantitative analysis method of digital IHC images. METHODS: hNIS expression was analyzed from 108 BC tissue samples by IHC. Sub-cellular localization of hNIS protein was analyzed by dual immunofluorescence (IF) staining method using hNIS and HER2 antibodies. An ImageJ based two-step digital analysis method was developed and applied for the bias-free analysis of the images. RESULTS: Staining of the tumor samples show 70% cases are hNIS positive indicating high incidence of hNIS positive cases in BC. More importantly, a subtype specific analysis done for the first time shows that hNIS expression is overly dominated in estrogen receptor (ER) positive cases than the receptor negative cases. Further, 56% of the ER+ve, PgR+ve, HER2-ve and 36% of ER+ve, PgR+ve, HER2+ve cases show highest intensity staining equivalent to the thyroid tissue. A significant positive correlation is also observed between hNIS and estrogen receptor expression (p = 0.0033, CI = 95%) suggesting hNIS mediated targeted radio-iodine therapy procedures may benefit both ER+ve, PgR+ve, HER2-ve as well as HER2+ve cases. Further, in a few cases, hNIS and HER2 protein localization is demonstrated by overlapping membrane co-expression. ImageJ based image analysis method shows over 70% match with manual pathological scoring method. CONCLUSION: The study indicates a positive link between hNIS and ER expression in BC. The quantitative IHC image analysis method reported here will further help in patient stratification and potentially benefit global clinical assessment where hNIS mediated targeted ¹³¹I radio-ablative therapy is aimed.


Assuntos
Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Simportadores/metabolismo , Adulto , Idoso , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA