Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Haematologica ; 97(2): 168-78, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22298821

RESUMO

BACKGROUND: Expansion of hematopoietic stem cells represents an important objective for improving cell and gene therapy protocols. Retroviral transduction of the HoxB4 homeogene in mouse and human hematopoietic stem cells and hematopoietic progenitors is known to promote the cells' expansion. A safer approach consists in transferring homeobox proteins into hematopoietic stem cells taking advantage of the natural ability of homeoproteins to cross cell membranes. Thus, HOXB4 protein transfer is operative for expanding human hematopoietic cells, but such expansion needs to be improved. DESIGN AND METHODS: To that aim, we evaluated the effects of HOXC4, a protein encoded by a HOXB4 paralog gene, by co-culturing HOXC4-producing stromal cells with human CD34(+) hematopoietic cells. Numbers of progenitors and stem cells were assessed by in vitro cloning assays and injection into immuno-deficient mice, respectively. We also looked for activation or inhibition of target downstream gene expression. RESULTS: We show that the HOXC4 homeoprotein expands human hematopoietic immature cells by 3 to 6 times ex vivo and significantly improves the level of in vivo engraftment. Comparative transcriptome analysis of CD34(+) cells subjected or not to HOXB4 or HOXC4 demonstrated that both homeoproteins regulate the same set of genes, some of which encode key hematopoietic factors and signaling molecules. Certain molecules identified herein are factors reported to be involved in stem cell fate or expansion in other models, such as MEF2C, EZH2, DBF4, DHX9, YPEL5 and Pumilio. CONCLUSIONS: The present study may help to identify new HOX downstream key factors potentially involved in hematopoietic stem cell expansion or in leukemogenesis.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
2.
Biol Cell ; 103(11): 531-42, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21810080

RESUMO

BACKGROUND INFORMATION: The identification of a source of stem cells able to regenerate skeletal muscle was the goal of numerous studies with the aim to develop new therapeutic approaches for genetic muscle diseases or muscle injuries. A series of studies have demonstrated that stem cells derived from various tissues may have a role in the regeneration of damaged muscles, but this contribution is always very weak. Thus we established a project aiming to reprogramme non-muscle cells into the skeletal striated differentiation pathway. RESULTS: We transduced several human primary adult stem or progenitor cells using a recombinant lentivirus containing the coding sequence of the Myf5 gene considered as a master gene for the determination of skeletal striated muscle. These original results are the first demonstration of a myogenic conversion of human mesenchymal and endothelial cells by Myf5. CONCLUSIONS: The procedure described in the present paper could be used to develop new research protocols with the prospect of using these cells as therapeutic agents.


Assuntos
Reprogramação Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mioblastos/citologia , Fator Regulador Miogênico 5/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Mioblastos/metabolismo , Fator Regulador Miogênico 5/genética
3.
Gene ; 374: 112-20, 2006 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-16549277

RESUMO

In Drosophila, the RING finger protein d-Goliath was originally identified as a transcription factor involved in the embryo mesoderm formation [Bouchard, M.L., Cote, S., 1993. The Drosophila melanogaster developmental gene g1 encodes a variant zinc-finger-motif protein. Gene 125, 205-209]. In mouse, the m-Goliath mRNA level was shown to be increased in growth factor withdrawal-induced apoptosis of myeloid cells [Baker, S.J., Reddy, E.P., 2000. Cloning of murine G1RP, a novel gene related to Drosophila melanogaster g1. Gene 248, 33-40]. Due to its putative function of transcription factor in apoptosis, we cloned the human cDNA for h-Goliath and characterized the expression of the protein in blood and bone marrow cells. The human protein of 419 aa (44 kDa) contains a protease-associated domain, a transmembrane domain and a RING-H2 motif. This structure classifies h-Goliath as a new member of a human family of ubiquitin ligases with GRAIL (gene related to anergy in lymphocytes) as founder. This E3 ligase controls the development of T cell clonal anergy by ubiquitination [Anandasabapathy, N., Ford, G.S., Bloom, D., Holness, C., Paragas, V., Seroogy, C., Skrenta, H., Hollenhorst, M., Fathman, C.G., Soares, L., 2003. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity 18, 535-547]. In vitro ubiquitination studies support the E3 ubiquitin ligase activity of h-Goliath. In human, the protein is expressed under 3 isoforms, a major one at 28 kDa and two others at 46 and 55 kDa. These proteins come from a common precursor (44 kDa) as we observed using in vitro transcription-translation. Using immunohistochemistry on blood or bone marrow smears, of healthy or leukemia samples, we found that the protein expression was restricted to the cytoplasm of progenitors and fully differentiated leukocyte populations. We did not observe any modification of h-Goliath expression or localization in leukemia. In these cells, this new E3 ubiquitin ligase protein does not seem associated with a differentiation state of the cell or with apoptosis.


Assuntos
Expressão Gênica/fisiologia , Leucócitos/enzimologia , Leucócitos/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imuno-Histoquímica , Dados de Sequência Molecular , Peso Molecular , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA