Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 128(3): 341-3, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24410543

RESUMO

Publication of a flawed manuscript has significant consequences for the progress of science. When this proves to be intentional, science is brought into disrepute and this puts even more pressure on the shrinking resources that society is prepared to invest in research. All scientific journals, including the Journal of Neurochemistry, have witnessed a marked increase in the number of corrections and retractions of published articles over the last 10 years, and uncovered a depressingly large number of fabrications among submitted manuscripts. The increase in number of 'spoiled' manuscripts reflects not only the improved methods that journals employ to detect plagiarism in its many forms but also suggests a measurable change in the behavior of authors. The increased policing of submissions by reviewers, editors, and publishers expends time and money. The sanctions imposed by journal editors on authors found guilty of malpractice are transparent and severe.


Assuntos
Revisão por Pares/normas , Publicações Periódicas como Assunto/normas , Editoração/normas , Plágio , Retratação de Publicação como Assunto , Má Conduta Científica
2.
Plant Physiol ; 157(1): 256-68, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21757634

RESUMO

The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.


Assuntos
Aminoácidos/metabolismo , Glicina/análogos & derivados , Herbicidas/farmacologia , Homeostase , Fotossíntese , Proteínas de Plantas/metabolismo , Ácido Chiquímico/antagonistas & inibidores , Glicina/farmacologia , Oxirredução , Proteômica , Ácido Chiquímico/metabolismo , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA