Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Neurosurg Focus ; 46(3): E8, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30835682

RESUMO

OBJECTIVEIn cell transplantation trials for spinal cord injury (SCI), quantifiable imaging criteria that serve as inclusion criteria are important in trial design. The authors' institutional experience has demonstrated an overall high rate of screen failures. The authors examined the causes for trial exclusion in a phase I, open-lab clinical trial examining the role of autologous Schwann cell intramedullary transplantation. Specifically, they reviewed the imaging characteristics in people with chronic SCI that excluded applicants from the trial, as this was a common cause of screening failures in their study.METHODSThe authors reviewed MRI records from 152 people with chronic (> 1 year) SCI who volunteered for intralesional Schwann cell transplantation but were deemed ineligible by prospectively defined criteria. Rostral-caudal injury lesion length was measured along the long axis of the spinal cord in the sagittal plane on T2-weighted MRI. Other lesion characteristics, specifically those pertaining to lesion cavity structure resulting in trial exclusion, were recorded.RESULTSImaging records from 152 potential participants with chronic SCI were reviewed, 42 with thoracic-level SCI and 110 with cervical-level SCI. Twenty-three individuals (55%) with thoracic SCI and 70 (64%) with cervical SCI were not enrolled in the trial based on imaging characteristics. For potential participants with thoracic injuries who did not meet the screening criteria for enrollment, the average rostral-caudal sagittal lesion length was 50 mm (SD 41 mm). In applicants with cervical injuries who did not meet the screening criteria for enrollment, the average sagittal lesion length was 34 mm (SD 21 mm).CONCLUSIONSWhile screening people with SCI for participation in a cell transplantation clinical trial, lesion length or volume can exclude potential subjects who appear appropriate candidates based on neurological eligibility criteria. In planning future cell-based therapy trials, the limitations incurred by lesion size should be considered early due to the screening burden and impact on candidate selection.


Assuntos
Ensaios Clínicos como Assunto/normas , Imageamento por Ressonância Magnética , Neuroimagem , Seleção de Pacientes , Traumatismos da Medula Espinal/diagnóstico por imagem , Adolescente , Adulto , Antropometria , Vértebras Cervicais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células de Schwann/transplante , Vértebras Torácicas , Adulto Jovem
2.
Biotechnol Bioeng ; 114(2): 444-456, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27570167

RESUMO

Schwann cell (SC) transplantation has been utilized for spinal cord repair and demonstrated to be a promising therapeutic strategy. In this study, we investigated the feasibility of combining SC transplantation with novel conduits to bridge the completely transected adult rat spinal cord. This is the first and initial study to evaluate the potential of using a fibrous piezoelectric polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) conduit with SCs for spinal cord repair. PVDF-TrFE has been shown to enhance neurite growth in vitro and peripheral nerve repair in vivo. In this study, SCs adhered and proliferated when seeded onto PVDF-TrFE scaffolds in vitro. SCs and PVDF-TrFE conduits, consisting of random or aligned fibrous inner walls, were transplanted into transected rat spinal cords for 3 weeks to examine early repair. Glial fibrillary acidic protein (GFAP)+ astrocyte processes and GFP (green fluorescent protein)-SCs were interdigitated at both rostral and caudal spinal cord/SC transplant interfaces in both types of conduits, indicative of permissivity to axon growth. More noradrenergic/DßH+ (dopamine-beta-hydroxylase) brainstem axons regenerated across the transplant when greater numbers of GFAP+ astrocyte processes were present. Aligned conduits promoted extension of DßH+ axons and GFAP+ processes farther into the transplant than random conduits. Sensory CGRP+ (calcitonin gene-related peptide) axons were present at the caudal interface. Blood vessels formed throughout the transplant in both conduits. This study demonstrates that PVDF-TrFE conduits harboring SCs are promising for spinal cord repair and deserve further investigation. Biotechnol. Bioeng. 2017;114: 444-456. © 2016 Wiley Periodicals, Inc.


Assuntos
Neurônios Adrenérgicos/fisiologia , Células de Schwann/citologia , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal/fisiologia , Alicerces Teciduais/química , Neurônios Adrenérgicos/citologia , Animais , Axônios/fisiologia , Técnicas Eletroquímicas , Feminino , Hidrocarbonetos Fluorados/química , Polivinil/química , Ratos , Células de Schwann/fisiologia
3.
J Physiol ; 594(13): 3533-8, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26876753

RESUMO

When cells (including Schwann cells; SCs) of the peripheral nervous system (PNS) could be purified and expanded in number in tissue culture, Richard Bunge in 1975 envisioned that the SCs could be introduced to repair the central nervous system (CNS), as SCs enable axons to regenerate after PNS injury. Importantly, autologous human SCs could be transplanted into injured human spinal cord. Availability of the new culture systems to study interactions between sensory neurons, SCs and fibroblasts increased our knowledge of SC biology in the 1970s and '80s. Joining the Miami Project to Cure Paralysis in 1989 brought the opportunity to use this knowledge to initiate spinal cord repair studies. Development of a rat complete spinal cord transection/SC bridge model allowed the demonstration that axons regenerate into the SC bridge. Together with study of contused rat spinal cord, it was concluded that implanted SCs reduce cavitation, protect tissue around the lesion, support axon regeneration and form myelin. SC transplantation efficacy was improved when combined with neurotrophins, elevation of cyclic AMP levels, olfactory ensheathing cells, a steroid or chondroitinase. Increased efficacy meant higher numbers of axons, particularly from the brainstem, and more SC-myelinated axons in the implants and improvement in hindlimb movements. Human SCs support axon regeneration as do rat SCs. Astrocytes at the SC bridge-host spinal cord interfaces play a key role in determining whether axons enter the SC milieu. The SC work described here contributed to gaining approval from the FDA for an initial autologous human SC clinical trial (at the Miami Project) that has been completed and found to be safe.


Assuntos
Células de Schwann/transplante , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal , Animais , Terapia Combinada , Humanos
4.
J Neuroinflammation ; 13(1): 87, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27098833

RESUMO

BACKGROUND: Fibrotic scar formation contributes to the axon growth-inhibitory environment that forms following spinal cord injury (SCI). We recently demonstrated that depletion of hematogenous macrophages led to a reduction in fibrotic scar formation and increased axon growth after SCI. These changes were associated with decreased TNFSF13 (a proliferation inducing ligand (APRIL)) expression, but the role of APRIL in fibrotic scar formation after SCI has not been directly investigated. Thus, the goal of this study was to determine the role of APRIL in fibrotic scar formation after SCI. METHODS: APRIL knockout and wild-type mice received contusive SCI and were assessed for inflammatory cytokine/chemokine expression, leukocyte infiltration, fibrotic scar formation, axon growth, and cell proliferation. RESULTS: Expression of APRIL and its receptor BCMA is increased following SCI, and genetic deletion of APRIL led to reduced fibrotic scar formation and increased axon growth. However, the fibrotic scar reduction in APRIL KO mice was not a result of changes in fibroblast or astrocyte proliferation. Rather, APRIL knockout mice displayed reduced TNFα and CCL2 expression and less macrophage and B cell infiltration at the injury site. CONCLUSIONS: Our data indicate that APRIL contributes to fibrotic scar formation after SCI by mediating the inflammatory response.


Assuntos
Cicatriz/metabolismo , Cicatriz/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regeneração Nervosa/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma
5.
J Neurosci ; 34(5): 1838-55, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24478364

RESUMO

Transplantation of Schwann cells (SCs) is a promising therapeutic strategy for spinal cord repair. SCs introduced into lesions support axon regeneration, but because these axons do not exit the transplant, additional approaches with SCs are needed. Here, we transplanted SCs genetically modified to secrete a bifunctional neurotrophin (D15A) and chondroitinase ABC (ChABC) into a subacute contusion injury in rats. We examined the effects of these modifications on graft volume, SC number, degradation of chondroitin sulfate proteoglycans (CSPGs), astrogliosis, SC myelination of axons, propriospinal and supraspinal axon numbers, locomotor outcome (BBB scoring, CatWalk gait analysis), and mechanical and thermal sensitivity on the hind paws. D15A secreted from transplanted SCs increased graft volume and SC number and myelinated axon number. SCs secreting ChABC significantly decreased CSPGs, led to some egress of SCs from the graft, and increased propriospinal and 5-HT-positive axons in the graft. SCs secreting both D15A and ChABC yielded the best responses: (1) the largest number of SC myelinated axons, (2) more propriospinal axons in the graft and host tissue around and caudal to it, (3) more corticospinal axons closer to the graft and around and caudal to it, (4) more brainstem neurons projecting caudal to the transplant, (5) increased 5-HT-positive axons in the graft and caudal to it, (6) significant improvement in aspects of locomotion, and (7) improvement in mechanical and thermal allodynia. This is the first evidence that the combination of SC transplants engineered to secrete neurotrophin and chondroitinase further improves axonal regeneration and locomotor and sensory function.


Assuntos
Condroitina ABC Liase/metabolismo , Locomoção/fisiologia , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa/fisiologia , Células de Schwann/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/cirurgia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Bioengenharia , Condroitina ABC Liase/biossíntese , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Hiperalgesia/fisiopatologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Fatores de Crescimento Neural/biossíntese , Regeneração Nervosa/efeitos dos fármacos , Limiar da Dor/fisiologia , Ratos , Ratos Endogâmicos F344 , Células de Schwann/transplante , Serotonina
6.
J Neurosci ; 32(15): 5284-97, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22496574

RESUMO

Myelination is a complex process requiring coordination of directional motility and an increase in glial cell size to generate a multilamellar myelin sheath. Regulation of actin dynamics during myelination is poorly understood. However, it is known that myelin thickness is related to the abundance of neuregulin-1 (NRG1) expressed on the axon surface. Here we identify cofilin1, an actin depolymerizing and severing protein, as a downstream target of NRG1 signaling in rat Schwann cells (SCs). In isolated SCs, NRG1 promotes dephosphorylation of cofilin1 and its upstream regulators, LIM kinase (LIMK) and Slingshot-1 phosphatase (SSH1), leading to cofilin1 activation and recruitment to the leading edge of the plasma membrane. These changes are associated with rapid membrane expansion yielding a 35-50% increase in SC size within 30 min. Cofilin1-deficient SCs increase phosphorylation of ErbB2, ERK, focal adhesion kinase, and paxillin in response to NRG1, but fail to increase in size possibly due to stabilization of unusually long focal adhesions. Cofilin1-deficient SCs cocultured with sensory neurons do not myelinate. Ultrastructural analysis reveals that they unsuccessfully segregate or engage axons and form only patchy basal lamina. After 48 h of coculturing with neurons, cofilin1-deficient SCs do not align or elongate on axons and often form adhesions with the underlying substrate. This study identifies cofilin1 and its upstream regulators, LIMK and SSH1, as end targets of a NRG1 signaling pathway and demonstrates that cofilin1 is necessary for dynamic changes in the cytoskeleton needed for axon engagement and myelination by SCs.


Assuntos
Cofilina 1/genética , Cofilina 1/fisiologia , Bainha de Mielina/fisiologia , Neuregulina-1/genética , Neuregulina-1/fisiologia , Células de Schwann/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Western Blotting , Polaridade Celular/genética , Proliferação de Células , Tamanho Celular , Técnicas de Cocultura , Corantes , Feminino , Imunofluorescência , Adesões Focais/genética , Gânglios Espinais/citologia , Quinases Lim/genética , Quinases Lim/fisiologia , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Microscopia Eletrônica , Bainha de Mielina/ultraestrutura , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/fisiologia , Fosforilação , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Células de Schwann/ultraestrutura
7.
Glia ; 60(4): 639-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22275133

RESUMO

Schwann cells (SCs) are crucial for peripheral nerve development and regeneration; however, the intrinsic regulatory mechanisms governing postinjury responses are poorly understood. Activation and deacetylation of nuclear factor-κB (NF- κB) in SCs have been implicated as prerequisites for peripheral nerve myelination. Using GFAP-IκBα-dn mice in which NF- κB transcriptional activation is inhibited in SCs, we found no discernable differences in the quantity or structure of myelinated axons in adult facial nerves. Following crush injury, axonal regeneration was impaired at 31 days and significantly enhanced at 65 days in transgenic animals. Compact remyelination and Remak bundle organization were significantly compromised at 31 days and restored by 65 days post injury. Together, these data indicate that inhibition of NF-κB activation in SCs transiently delays axonal regeneration and compact remyelination. Manipulating the temporal activation of nuclear factor-κB in Schwann cells may offer new therapeutic avenues for PNS and CNS regeneration.


Assuntos
Proteínas I-kappa B/metabolismo , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Células de Schwann/metabolismo , Degeneração Walleriana/patologia , Análise de Variância , Animais , Axotomia/métodos , Antígeno CD11b/metabolismo , Modelos Animais de Doenças , Traumatismos do Nervo Facial/complicações , Traumatismos do Nervo Facial/etiologia , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas I-kappa B/genética , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Neurônios Motores/patologia , Proteína P0 da Mielina/metabolismo , Inibidor de NF-kappaB alfa , Proteínas de Neurofilamentos/metabolismo , Tempo de Reação/genética , Recuperação de Função Fisiológica/genética , Células de Schwann/patologia , Células de Schwann/ultraestrutura , Estilbamidinas , Fatores de Tempo , Degeneração Walleriana/etiologia
8.
J Gene Med ; 14(1): 20-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22106053

RESUMO

BACKGROUND: Adeno-associated virus (AAV) vector-mediated transgene expression is a promising therapeutic to change the intrinsic state of neurons and promote repair after central nervous system injury. Given that numerous transgenes have been identified as potential candidates, the present study demonstrates how to determine whether their expression by AAV has a direct intrinsic effect on axon regeneration. METHODS: Serotype 2 AAV-enhanced green fluorescent protein (EGFP) was stereotaxically injected into the brainstem of adult rats, followed by a complete transection of the thoracic spinal cord and Schwann cell (SC) bridge implantation. RESULTS: The expression of EGFP in brainstem neurons labeled numerous axons in the thoracic spinal cord and that regenerated into the SC bridge. The number of EGFP-labeled axons rostral to the bridge directly correlated with the number of EGFP-labeled axons that regenerated into the bridge. Animals with a greater number of EGFP-labeled axons rostral to the bridge exhibited an increased percentage of those axons found near the distal end of the bridge compared to animals with a lesser number. This suggested that EGFP may accumulate distally in the axon with time, enabling easier visualization. By labeling brainstem axons with EGFP before injury, numerous axon remnants undergoing Wallerian degeneration may be identified distal to the complete transection up to 6 weeks after injury. CONCLUSIONS: Serotype 2 AAV-EGFP enabled easy visualization of brainstem axon regeneration. Rigorous models of axonal injury (i.e. complete transection and cell implantation) should be used in combination with AAV-EGFP to directly assess AAV-mediated expression of therapeutic transgenes as intrinsic treatments to improve axonal regeneration.


Assuntos
Axônios/fisiologia , Tronco Encefálico/patologia , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Regeneração Nervosa/fisiologia , Animais , Feminino , Proteínas de Fluorescência Verde/metabolismo , Regeneração Nervosa/genética , Neurônios/metabolismo , Neurônios/virologia , Ratos , Coloração e Rotulagem , Técnicas Estereotáxicas , Degeneração Walleriana/patologia
9.
J Neurosurg Spine ; 36(1): 135-144, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479193

RESUMO

OBJECTIVE: Schwann cells (SCs) have been shown to play an essential role in axon regeneration in both peripheral nerve injuries (PNIs) and spinal cord injuries (SCIs). The transplantation of SCs as an adjunctive therapy is currently under investigation in human clinical trials due to their regenerative capacity. Therefore, a reliable method for procuring large quantities of SCs from peripheral nerves is necessary. This paper presents a well-developed, validated, and optimized manufacturing protocol for clinical-grade SCs that are compliant with Current Good Manufacturing Practices (CGMPs). METHODS: The authors evaluated the SC culture manufacturing data from 18 clinical trial participants who were recruited for autologous SC transplantation due to subacute SCI (n = 7), chronic SCI (n = 8), or PNIs (n = 3). To initiate autologous SC cultures, a mean nerve length of 11.8 ± 3.7 cm was harvested either from the sural nerve alone (n = 17) or with the sciatic nerve (n = 1). The nerves were digested with enzymes and SCs were isolated and further expanded in multiple passages to meet the dose requirements for transplantation. RESULTS: An average yield of 87.2 ± 89.2 million cells at P2 and 150.9 ± 129.9 million cells at P3 with high viability and purity was produced. Cell counts and rates of expansion increased with each subsequent passage from P0 to P3, with the largest rate of expansion between P2 and P3. Larger harvest nerve lengths correlated significantly with greater yields at P0 and P1 (p < 0.05). In addition, a viability and purity above 90% was sustained throughout all passages in nearly all cell products. CONCLUSIONS: This study presents reliable CGMP-compliant manufacturing methods for autologous SC products that are suitable for regenerative treatment of patients with SCI, PNI, or other conditions.


Assuntos
Técnicas de Cultura de Células/métodos , Transplante de Células , Traumatismos dos Nervos Periféricos/terapia , Células de Schwann/fisiologia , Células de Schwann/transplante , Traumatismos da Medula Espinal/terapia , Adulto , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Transplante Autólogo , Adulto Jovem
10.
J Neurotrauma ; 39(3-4): 285-299, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33757304

RESUMO

A phase 1 open-label, non-randomized clinical trial was conducted to determine feasibility and safety of autologous human Schwann cell (ahSC) transplantation accompanied by rehabilitation in participants with chronic spinal cord injury (SCI). Magnetic resonance imaging (MRI) was used to screen eligible participants to estimate an individualized volume of cell suspension to be implanted. The trial incorporated standardized multi-modal rehabilitation before and after cell delivery. Participants underwent sural nerve harvest, and ahSCs were isolated and propagated in culture. The dose of culture-expanded ahSCs injected into the chronic spinal cord lesion of each individual followed a cavity-filling volume approach. Primary outcome measures for safety and trend-toward efficacy were assessed. Two participants with American Spinal Injury Association Impairment Scale (AIS) A and two participants with incomplete chronic SCI (AIS B, C) were each enrolled in cervical and thoracic SCI cohorts (n = 8 total). All participants completed the study per protocol, and no serious adverse events related to sural nerve harvest or ahSC transplantation were reported. Urinary tract infections and skin abrasions were the most common adverse events reported. One participant experienced a 4-point improvement in motor function, a 6-point improvement in sensory function, and a 1-level improvement in neurological level of injury. Follow-up MRI in the cervical (6 months) and thoracic (24 months) cohorts revealed a reduction in cyst volume after transplantation with reduced effect over time. This phase 1 trial demonstrated the feasibility and safety of ahSC transplantation combined with a multi-modal rehabilitation protocol for participants with chronic SCI.


Assuntos
Transplante de Células , Células de Schwann/transplante , Traumatismos da Medula Espinal/cirurgia , Transplante Autólogo , Adulto , Feminino , Humanos , Vértebras Lombares/lesões , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Nervo Sural , Vértebras Torácicas/lesões , Resultado do Tratamento
11.
Nat Med ; 10(6): 610-6, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15156204

RESUMO

Central neurons regenerate axons if a permissive environment is provided; after spinal cord injury, however, inhibitory molecules are present that make the local environment nonpermissive. A promising new strategy for inducing neurons to overcome inhibitory signals is to activate cAMP signaling. Here we show that cAMP levels fall in the rostral spinal cord, sensorimotor cortex and brainstem after spinal cord contusion. Inhibition of cAMP hydrolysis by the phosphodiesterase IV inhibitor rolipram prevents this decrease and when combined with Schwann cell grafts promotes significant supraspinal and proprioceptive axon sparing and myelination. Furthermore, combining rolipram with an injection of db-cAMP near the graft not only prevents the drop in cAMP levels but increases them above those in uninjured controls. This further enhances axonal sparing and myelination, promotes growth of serotonergic fibers into and beyond grafts, and significantly improves locomotion. These findings show that cAMP levels are key for protection, growth and myelination of injured CNS axons in vivo and recovery of function.


Assuntos
Axônios/fisiologia , AMP Cíclico/metabolismo , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica , Células de Schwann/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Tronco Encefálico/citologia , Bucladesina/metabolismo , Transplante de Células , Feminino , Interleucina-1/metabolismo , Atividade Motora/fisiologia , Ratos , Ratos Endogâmicos F344 , Rolipram/metabolismo , Células de Schwann/transplante , Sistemas do Segundo Mensageiro/fisiologia , Serotonina/metabolismo , Traumatismos da Medula Espinal/patologia , Fator de Necrose Tumoral alfa/metabolismo
12.
J Neurosci Res ; 88(4): 712-21, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19795370

RESUMO

Monitoring pathology/regeneration in experimental models of de-/remyelination requires an accurate measure not only of functional changes but also of the amount of myelin. We tested whether X-ray diffraction (XRD), which measures periodicity in unfixed myelin, can assess the structural integrity of myelin in fixed tissue. From laboratories involved in spinal cord injury research and in studying the aging primate brain, we solicited "blind" samples and used an electronic detector to record rapidly the diffraction patterns (30 min each pattern) from them. We assessed myelin integrity by measuring its periodicity and relative amount. Fixation of tissue itself introduced +/-10% variation in periodicity and +/-40% variation in relative amount of myelin. For samples having the most native-like periods, the relative amounts of myelin detected allowed distinctions to be made between normal and demyelinating segments, between motor and sensory tracts within the spinal cord, and between aged and young primate CNS. Different periodicities also allowed distinctions to be made between samples from spinal cord and nerve roots and between well-fixed and poorly fixed samples. Our findings suggest that, in addition to evaluating the effectiveness of different fixatives, XRD could also be used as a robust and rapid technique for quantitating the relative amount of myelin among spinal cords and other CNS tissue samples from experimental models of de- and remyelination.


Assuntos
Sistema Nervoso Central/patologia , Doenças Desmielinizantes/patologia , Bainha de Mielina/patologia , Envelhecimento , Animais , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Etídio , Macaca mulatta , Camundongos , Bainha de Mielina/metabolismo , Ratos , Difração de Raios X/métodos
13.
Glia ; 57(9): 947-61, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19053056

RESUMO

The expression of myelination-associated genes (MGs) can be induced by cyclic adenosine monophosphate (cAMP) elevation in isolated Schwann cells (SCs). To further understand the effect of known SC mitogens in the regulation of SC differentiation, we studied the response of SCs isolated from adult nerves to combined cAMP, growth factors, including neuregulin, and serum. In adult SCs, the induction of MGs by cAMP coincided with the loss of genes expressed in non-myelin-forming SCs and with a change in cell morphology from a bipolar to an expanded epithelial-like shape. Prolonged treatment with high doses of cAMP-stimulating agents, as well as low cell density, was required for the induction of SC differentiation. Stimulation with serum, neuregulin alone, or other growth factors including PDGF, IGF and FGF, increased SC proliferation but did not induce the expression of MGs or the associated morphological change. Most importantly, when these factors were administered in combination with cAMP-stimulating agents, SC proliferation was synergistically increased without reducing the differentiating activity of cAMP. Even though the initiation of DNA synthesis and the induction of differentiation were mostly incompatible events in individual cells, SCs were able to differentiate under conditions that also supported active proliferation. Overall, the results indicate that in the absence of neurons, cAMP can trigger SC re-differentiation concurrently with, but independently of, growth factor signaling.


Assuntos
AMP Cíclico/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Bainha de Mielina/genética , Células de Schwann/fisiologia , Animais , Contagem de Células , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , DNA/biossíntese , Fatores de Crescimento de Fibroblastos/metabolismo , Gânglios Espinais/fisiologia , Expressão Gênica , Neurregulinas/metabolismo , Neurônios/fisiologia , Fenótipo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ratos , Células de Schwann/citologia , Soro/metabolismo
14.
Exp Eye Res ; 89(4): 538-48, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19524566

RESUMO

The purpose of this study was to determine the viability of cell-based delivery of brain-derived neurotrophic factor (BDNF) from genetically modified mesenchymal stem cells (MSCs) for neuroprotection of RGC-5 cells. RGC-5 cells were differentiated with the protein kinase inhibitor staurosporine (SS) and exposed to the cellular stressors glutamate or H2O2. As a neuroprotective strategy, these cells were then co-cultured across a membrane insert with mesenchymal stem cells (MSCs) engineered with a lentiviral vector for production of BDNF (BDNF-MSCs). As a positive control, recombinant human BDNF (rhBDNF) was added to stressed RGC-5 cells. After SS-differentiation RGC-5s developed neuronal-like morphologies, and a significant increase in the proportion of RGC-5s immunoreactive for TuJ-1 and Brn3a was observed. Differentiated RGC-5s also had prominent TrkB staining, demonstrating expression of the high-affinity BDNF receptor. Treatment of SS-differentiated RGC-5s with glutamate or H2O2, produced significant cell death (56.0 +/- 7.02 and 48.90 +/- 4.58% of control cells, respectively) compared to carrier-solution treated cells. BDNF-delivery from MSCs preserved more RGC-5 cells after treatment with glutamate (80.0 +/- 5.40% cells remaining) than control GFP expressing MSCs (GFP-MSCs, 57.29 +/- 1.89%, p < 0.01). BDNF-MSCs also protected more RGC-5s after treatment with H2O2 (65.6 +/- 3.47%) than GFP-MSCs (46.0 +/- 4.20%, p < 0.01). We have shown survival of differentiated RGC-5s is reduced by the cellular stressors glutamate and H2O2. Additionally, our results demonstrate that genetically modified BDNF-producing MSCs can enhance survival of stressed RGC-5 cells and therefore, may be effective vehicles to deliver BDNF to retinal ganglion cells affected by disease.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Ácido Glutâmico/toxicidade , Peróxido de Hidrogênio/toxicidade , Células-Tronco Mesenquimais/metabolismo , Células Ganglionares da Retina/citologia , Estaurosporina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Inibidores Enzimáticos/farmacologia , Técnica Indireta de Fluorescência para Anticorpo , Engenharia Genética , Fármacos Neuroprotetores/farmacologia , Ratos , Receptor trkB/metabolismo , Proteínas Recombinantes/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Fator de Transcrição Brn-3A/metabolismo , Tubulina (Proteína)/metabolismo
16.
J Spinal Cord Med ; 31(3): 262-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18795474

RESUMO

Due to the varied and numerous changes in spinal cord tissue following injury, successful treatment for repair may involve strategies combining neuroprotection (pharmacological prevention of some of the damaging intracellular cascades that lead to secondary tissue loss), axonal regeneration promotion (cell transplantation, genetic engineering to increase growth factors, neutralization of inhibitory factors, reduction in scar formation), and rehabilitation. Our goal has been to find effective combination strategies to improve outcome after injury to the adult rat thoracic spinal cord. Combination interventions tested have been implantation of Schwann cells (SCs) plus neuroprotective agents and growth factors administered in various ways, olfactory ensheathing cell (OEC) implantation, chondroitinase addition, or elevation of cyclic AMP. The most efficacious strategy in our hands for the acute complete transection/SC bridge model, including improvement in locomotion [Basso, Beattie, Bresnahan Scale (BBB)], is the combination of SCs, OECs, and chondroitinase administration (BBB 2.1 vs 6.6, 3 times more myelinated axons in the SC bridge, increased serotonergic axons in the bridge and beyond, and significant correlation between the number of bridge myelinated axons and functional improvement). We found the most successful combination strategy for a subacute spinal cord contusion injury (12.5-mm, 10-g weight, MASCIS impactor) to be SCs and elevation of cyclic AMP (BBB 10.4 vs 15, significant increases in white matter sparing, in myelinated axons in the implant, and in responding reticular formation and red and raphe nuclei, and a significant correlation between the number of serotonergic fibers and improvement in locomotion). Thus, in two injury paradigms, these combination strategies as well as others studied in our laboratory have been found to be more effective than SCs alone and suggest ways in which clinical application may be developed.


Assuntos
Condroitinases e Condroitina Liases/administração & dosagem , Nervo Olfatório/citologia , Células de Schwann/transplante , Traumatismos da Medula Espinal/terapia , Animais , AMP Cíclico/metabolismo , Humanos , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/metabolismo
17.
Methods Mol Biol ; 1739: 195-212, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29546709

RESUMO

The transmission electron microscope (TEM) enables a unique and valuable examination of cellular and extracellular elements in tissue in situ, in cultured cells, or in pellets derived from suspensions of cells or other materials such as nanoparticles. Here we focus on the preparation of cultured Schwann cells or Schwann cell-containing dorsal root ganglion cultures. To gain as life-like as possible views of the cellular details, it is imperative to achieve excellent preservation of the cellular structure. The steps in the preparation of cultures described in this chapter represent the results of many years of accumulated TEM images to find the best methods of preservation for Schwann cells, myelin, and basal lamina components. All the materials required are listed. The methods for fixing, dehydrating, and embedding a culture are described. Choosing an area in the culture to view, scoring it, cutting it out of the resin-embedded culture, mounting it appropriately for enface or cross-sectioning, and performing the semi-thin and thin sectioning are detailed. Explaining the way in which the sections are then stained for TEM completes the Methods section. Preservation of cultured Schwann cells and their myelin sheaths can be outstanding due to the direct and rapid but careful addition of the fixative solution to the culture dish.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Microtomia/métodos , Bainha de Mielina/ultraestrutura , Células de Schwann/ultraestrutura , Animais , Gânglios Espinais/citologia , Gânglios Espinais/ultraestrutura , Humanos
18.
Methods Mol Biol ; 1739: 269-279, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29546713

RESUMO

In vitro models using Schwann cell and astrocyte co-cultures have been used to understand the mechanisms underlying the formation of boundaries between these cells in vivo. Schwann cell/astrocyte co-cultures also mimic the in vivo scenario of a transplant in a spinal cord injury site, thereby allowing testing of therapeutic approaches. In this chapter, we describe a triple cell culture system with Schwann cells, astrocytes, and neurons that replicates axon growth from a Schwann cell graft into an astrocyte-rich region. In vitro studies using this model can accelerate the discovery of more effective therapeutic combinations to be used along with Schwann cell transplantation after spinal cord injuries.


Assuntos
Astrócitos/citologia , Neurônios/citologia , Células de Schwann/citologia , Animais , Células Cultivadas , Técnicas de Cocultura , Regeneração Nervosa/fisiologia , Ratos
19.
Neural Regen Res ; 13(4): 684-691, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29722321

RESUMO

Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage depletion does improve histopathology of the injury site, the effect on axon growth and behavioral recovery appears no better than what can be achieved with Schwann cell transplants alone.

20.
Methods Mol Biol ; 1739: 111-126, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29546703

RESUMO

Cell-based therapies have become a major focus in preclinical research that leads to clinical application of a therapeutic product. Since 1990, scientists at the Miami Project to Cure Paralysis have generated extensive data demonstrating that Schwann cell (SC) transplantation supports spinal cord repair in animals with spinal cord injury. After preclinical efforts in SC transplantation strategies, efficient methods for procuring large, essentially pure populations of SCs from the adult peripheral nerve were developed for rodent and pig studies. This chapter describes a series of simple procedures to obtain and cryopreserve large cultures of highly purified adult nerve-derived SCs without the need for additional purification steps. This protocol permits the derivation of ≥90% pure rodent and porcine SCs within 2-4 weeks of culture.


Assuntos
Separação Celular/métodos , Células de Schwann/citologia , Animais , Células Cultivadas , Tecido Conjuntivo , Fibroblastos/citologia , Nervos Periféricos/citologia , Ratos , Ratos Endogâmicos F344 , Medicina Regenerativa , Suínos , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA