Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 143(7): 2009-2026, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32651949

RESUMO

We only have a rudimentary understanding of the molecular and cellular determinants of nerve regeneration and neuropathic pain in humans. This cohort study uses the most common entrapment neuropathy (carpal tunnel syndrome) as a human model system to prospectively evaluate the cellular and molecular correlates of neural regeneration and its relationship with clinical recovery. In 60 patients undergoing carpal tunnel surgery [36 female, mean age 62.5 (standard deviation 12.2) years], we used quantitative sensory testing and nerve conduction studies to evaluate the function of large and small fibres before and 6 months after surgery. Clinical recovery was assessed with the global rating of change scale and Boston Carpal Tunnel Questionnaire. Twenty healthy participants provided normative data [14 female, mean age 58.0 (standard deviation 12.9) years]. At 6 months post-surgery, we noted significant recovery of median nerve neurophysiological parameters (P < 0.0001) and improvements in quantitative sensory testing measures of both small and large nerve fibre function (P < 0.002). Serial biopsies revealed a partial recovery of intraepidermal nerve fibre density [fibres/mm epidermis pre: 4.20 (2.83), post: 5.35 (3.34), P = 0.001], whose extent correlated with symptom improvement (r = 0.389, P = 0.001). In myelinated afferents, nodal length increased postoperatively [pre: 2.03 (0.82), post: 3.03 (1.23), P < 0.0001] suggesting that this is an adaptive phenomenon. Transcriptional profiling of the skin revealed 31 differentially expressed genes following decompression, with ADCYAP1 (encoding pituitary adenylate cyclase activating peptide, PACAP) being the most strongly upregulated (log2 fold-change 1.87, P = 0.0001) and its expression was associated with recovery of intraepidermal nerve fibres. We found that human induced pluripotent stem cell-derived sensory neurons expressed the receptor for PACAP and that this peptide could significantly enhance axon outgrowth in a dose-dependent manner in vitro [neurite length PACAP 1065.0 µm (285.5), vehicle 570.9 µm (181.8), P = 0.003]. In conclusion, carpal tunnel release is associated with significant cutaneous reinnervation, which correlates with the degree of functional improvement and is associated with a transcriptional programme relating to morphogenesis and inflammatory processes. The most highly dysregulated gene ADCYAP1 (encoding PACAP) was associated with reinnervation and, given that this peptide signals through G-protein coupled receptors, this signalling pathway provides an interesting therapeutic target for human sensory nerve regeneration.


Assuntos
Regeneração Nervosa/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Células Receptoras Sensoriais/metabolismo , Adulto , Idoso , Síndrome do Túnel Carpal , Estudos de Coortes , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade
2.
Sci Rep ; 11(1): 18567, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535729

RESUMO

Cam morphology describes an asphericity of the femoral head that develops during adolescence, is highly prevalent in athletes, and predisposes individuals to future osteoarthritis. However, it's aetiology remains poorly understood. The aim of this study was to perform 3-year longitudinal follow-up of a control population and football club academy cohort to compare the change in hip and growth plate anatomy between athletes and controls. MRI and questionnaires were used to characterise change in hip and growth plate anatomy and quantify activity levels. 121 male academy footballers and 107 male and female controls participated at baseline. Footballers experienced significantly greater increases in femoral head asphericity (4.83 degrees (95% CI: 2.84 to 6.82), p < 0.001) than controls. A positive correlation existed between activity levels and change in femoral head morphology (coefficient 0.79, p ≤ 0.001). Greatest morphological change occurred in individuals aged 11-12 years at baseline, with no significant change in individuals aged 14 years and older at baseline. Cam morphology development was secondary to soft tissue hypertrophy and lateral growth plate extension. In conclusion, excessive loading of the hip joint through exercise prior to 14 years of age may result in growth plate adaptations causing cam morphology. Potential interventions may include training type and load modification in young adolescent football players.


Assuntos
Cabeça do Fêmur/crescimento & desenvolvimento , Cabeça do Fêmur/patologia , Osteoartrite/etiologia , Adolescente , Criança , Exercício Físico , Feminino , Articulação do Quadril/crescimento & desenvolvimento , Articulação do Quadril/patologia , Humanos , Estudos Longitudinais , Masculino , Fatores de Risco , Futebol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA