Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 43(6): e2100823, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35084072

RESUMO

Stretchable electrodes are more suitable for dielectric elastomer transducers (DET) the closer the mechanical characteristics of the electrodes and elastomer are. Here, a solvent-free synthesis and processing of conductive composites with excellent electrical and mechanical properties for transducers are presented. The composites are prepared by in situ polymerization of cyclosiloxane monomers in the presence of graphene nanoplatelets. The low viscosity of the monomer allows for easy dispersion of the filler, eliminating the need for a solvent. After the polymerization, a cross-linking agent is added at room temperature, the composite is solvent-free screen-printed, and the cross-linking reaction is initiated by heating. The best material shows conductivity σ = 8.2 S cm-1 , Young's modulus Y10%  = 167 kPa, and strain at break s = 305%. The electrode withstands large strains without delamination, shows no conductivity losses during repeated operation for 500 000 cycles, and has an excellent recovery of electrical properties upon being stretched at strains of up to 180%. Reliable prototype capacitive sensors and stack actuators are manufactured by screen-printing the conductive composite on the dielectric film. Stack actuators manufactured from dielectric and conductive materials that are synthesized solvent-free are demonstrated. The stack actuators even self-repair after a breakdown event.


Assuntos
Elastômeros , Transdutores , Condutividade Elétrica , Eletrodos , Solventes
2.
Biomater Adv ; 134: 112540, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35525740

RESUMO

Direct ink writing (DIW) is a promising extrusion-based 3D printing technology, which employs an ink-deposition nozzle to fabricate 3D scaffold structures with customizable ink formulations for tissue engineering applications. However, determining the optimal DIW process parameters such as temperature, pressure, and speed for the specific ink is essential to achieve high reproducibility of the designed geometry and subsequent mechano-biological performance for different applications, particularly for porous scaffolds of finite sizes (total volume > 1000 mm3) and controlled pore size and porosity. The goal of this study was to evaluate the feasibility of fabricating Polycaprolactone (PCL) and bio-active glass (BG) composite-based 3D scaffolds of finite size using DIW. 3D-scaffolds were fabricated either as cylinders (10 mm diameter; 15 mm height) or cubes (5 × 5 × 5 mm3) with height/width aspect ratios of 1.5 and 1, respectively. A rheological characterization of the PCL-BG inks was performed before printing to determine the optimal printing parameters such as pressure and speed for printing at 110 °C. Microstructural properties of the scaffolds were analyzed in terms of overall scaffold porosity, and in situ pore size assessments in each layer (36 pores/layer; 1764 pores per specimen) during their fabrication. Measured porosity of the fabricated specimens-PCL: x¯ =46.94%, SD = 1.61; PCL-10 wt%BG: x¯ = 48.29%, SD = 5.95; and PCL-20 wt% BG: x¯=50.87%, SD = 2.45-matched well with the designed porosity of 50%. Mean pore sizes-PCL [x¯ = 0.37 mm (SD = 0.03)], PCL-10%BG [x¯ = 0.38 mm (SD = 0.07)] and PCL-20% BG [x¯ = 0.37 mm (SD = 0.04)]-were slightly fairly close to the designed pore size of 0.4 mm. Nevertheless there was a small but consistent, statistically significant (p < 0.0001) decrease in pore size from the first printed layer (PCL: 0.39 mm; PCL-10%BG: 0.4 mm; PCL-20%BG: 0.41 mm) to the last. SEM and micro-CT imaging revealed consistent BG particle distribution across the layers and throughout the specimens. Cell adhesion experiments revealed similar cell adhesion of PCL-20 wt% BG to pure PCL, but significantly better cell proliferation - as inferred from metabolic activity - after 7 days, although a decrease after 14 days was noted. Quasi-static compression tests showed a decrease in compressive yield strength and apparent elastic modulus with increasing BG fraction, which could be attributed to a lack of adequate mechanical bonding between the BG particles and the PCL matrix. The results show that the inks were successfully generated, and the scaffolds were fabricated with high resolution and fidelity despite their relatively large size (>1000 mm3). However, further work is required to understand the mechano-biological interaction between the BG particle additives and the PCL matrix to improve the mechanical and biological properties of the printed structures.


Assuntos
Poliésteres , Alicerces Teciduais , Poliésteres/química , Impressão Tridimensional , Reprodutibilidade dos Testes , Alicerces Teciduais/química
3.
Mater Sci Eng C Mater Biol Appl ; 123: 111945, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812577

RESUMO

Additive manufacturing encompasses a plethora of techniques to manufacture structures from a computational model. Among them, fused filament fabrication (FFF) relies on heating thermoplastics to their fusion point and extruding the material through a nozzle in a controlled pattern. FFF is a suitable technique for tissue engineering, given that allows the fabrication of 3D-scaffolds, which are utilized for tissue regeneration purposes. The objective of this study is to assess a low-cost/open-source 3D printer (In-House), by manufacturing both solid and porous samples with relevant microarchitecture in the physiological range (100-500 µm pore size), using an equivalent commercial counterpart for comparison. For this, compressive tests in solid and porous scaffolds manufactured in both printers were performed, comparing the results with finite element analysis (FEA) models. Additionally, a microarchitectural analysis was done in samples from both printers, comparing the measurements of both pore size and porosity to their corresponding computer-aided design (CAD) models. Moreover, a preliminary biological assessment was performed using scaffolds from our In-House printer, measuring cell adhesion efficiency. Finally, Fourier transform infrared spectroscopy - attenuated total reflectance (FTIR-ATR) was performed to evaluate chemical changes in the material (polylactic acid) after fabrication in each printer. The results show that the In-House printer achieved generally better mechanical behavior and resolution capacity than its commercial counterpart, by comparing with their FEA and CAD models, respectively. Moreover, a preliminary biological assessment indicates the feasibility of the In-House printer to be used in tissue engineering applications. The results also show the influence of pore geometry on mechanical properties of 3D-scaffolds and demonstrate that properties such as the apparent elastic modulus (Eapp) can be controlled in 3D-printed scaffolds.


Assuntos
Impressão Tridimensional , Alicerces Teciduais , Módulo de Elasticidade , Porosidade , Engenharia Tecidual
4.
Materials (Basel) ; 12(17)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450651

RESUMO

It was shown previously that cyclic loading can be used to extend the fatigue life of sheet plastic materials subjected to the preliminary impact-oscillatory loading. This type of loading causes dynamic non-equilibrium processes (DNP) in materials, which lead to the formation of dissipative structures in materials and on their surface. The density of these dissipative structures is less than that of the base metal. In this paper, the results of investigations into the relief and hardness of surface layers modified by impact-oscillatory loading are analyzed on the example of five structural materials. The signs of a regular, orderly system of microextrusions formed on flat surfaces of all materials due to DNP are considered along with the alignment of roughness parameters Rz and Ra of relief profiles. The effect of impact-oscillatory loading is one of the main causes that lead to the extension of the fatigue life of materials.

5.
Sci Rep ; 9(1): 13331, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527691

RESUMO

Conductive inks consisting of graphene and carbon black conductive fillers into a polydimethylsiloxane (PDMS) matrix, which can be processed into thin films by screen printing are developed. The influence of filler composition and content on mechanical and electrical properties of the conductive composites is investigated. The best composites were evaluated as electrode material for dielectric elastomer actuators and for piezoelectric sensors. With increasing filler content, the electrical properties of the resulting composites of graphite nanoplates (GNPs) or a binary mixture of GNPs and carbon black (CB) with PDMS (Mw = 139 kg/mol) are enhanced. Hence, PDMS composites filled with GNPs (42 wt.%) or a binary mixture of GNPs/CB (300/150 ratio, 30 wt.% of total filler loading) exhibited constant contact resistance values of 0.5 and 5 Ω determined in life-cycle test, respectively, thus rendering them suitable as electrode materials for piezosensors. On the other hand, dielectric elastomer actuators require more flexible electrode materials, which could be tuned by varying the polymer molecular weight and by reducing the filler content. Therefore, a composite consisting of PDMS (Mw = 692 kg/mol) and a binary filler mixture of GNPs/CB (150/75 ratio, 18 wt.% of total filler loading) was used for producing the electrodes of dielectric elastomer transducers (DETs). The produced DETs with different electrode thicknesses were characterized in terms of their performance. The negligible hysteresis of the electrode materials is favorable for sensor and actuator applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA