Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Environ Microbiol ; 23(7): 3682-3694, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32996242

RESUMO

In previous work, lab-scale reactors designed to study microbial Fe(II) oxidation rates at low pH were found to have stable rates under a wide range of pH and Fe(II) concentrations. Since the stirred reactor environment eliminates many of the temporal and spatial variations that promote high diversity among microbial populations in nature, we were surprised that the reactors supported multiple taxa presumed to be autotrophic Fe(II) oxidizers based on their phylogeny. Metagenomic analyses of the reactor communities revealed differences in the metabolic potential of these taxa with respect to Fe(II) oxidation and carbon fixation pathways, acquisition of potentially growth-limiting substrates and the ability to form biofilms. Our findings support the hypothesis that the long-term co-existence of multiple autotrophic Fe(II)-oxidizing populations in the reactors are due to distinct metabolic potential that supports differential growth in response to limiting resources such as nitrogen, phosphorus and oxygen. Our data also highlight the role of biofilms in creating spatially distinct geochemical niches that enable the co-existence of multiple taxa that occupy the same apparent metabolic niche when the system is viewed in bulk. The distribution of key metabolic functions across different co-existing taxa supported functional redundancy and imparted process stability to these reactors.


Assuntos
Metagenômica , Nitrogênio , Processos Autotróficos , Reatores Biológicos , Compostos Ferrosos , Oxirredução
2.
Environ Sci Technol ; 54(8): 4829-4839, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32250106

RESUMO

Mixing of acid mine drainage (AMD) and hydraulic fracturing flowback fluids (HFFF) could represent an efficient management practice to simultaneously manage two complex energy wastewater streams while reducing freshwater resource consumption. AMD discharges offer generally high sulfate concentrations, especially from the bituminous coal region of Pennsylvania; unconventional Marcellus shale gas wells generally yield HFFF enriched in alkaline earth metals such as Sr and Ba, known to cause scaling issues in oil and gas (O&G) production. Mixing the two waters can precipitate HFFF-Ba and -Sr with AMD-SO4, therefore removing them from solution. Four AMD discharges and HFFF from two unconventional Marcellus shale gas wells were characterized and mixed in batch reactors for 14 days. Ba could be completely removed from solution within 1 day of mixing in the form BaxSr1-xSO4 and no further significant precipitation occurred after 2 days. Total removal efficiencies of Ba + Sr + SO4 and the proportion of Ba and Sr in BaxSr1-xSO4 depended upon the Ba/Sr ratio in the initial HFFF. A geochemical model was calibrated from batch reactor data and used to identify optimum AMD-HFFF mixing ratios that maximize total removal efficiencies (Ba + Sr + SO4) for reuse in O&G development. Increasing Ba/Sr ratios can enhance total removal efficiency but decrease the efficiency of Ra removal. Thus, treatment objectives and intended beneficial reuse need to be identified prior to optimizing the treatment of HFFF with AMD.


Assuntos
Rádio (Elemento) , Poluentes Químicos da Água/análise , Região dos Apalaches , Bário , Gás Natural , Pennsylvania , Estrôncio , Sulfatos , Águas Residuárias
3.
Environ Sci Technol ; 52(1): 327-336, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29172473

RESUMO

Polyacrylamide (PAM) based friction reducers are a primary ingredient of slickwater hydraulic fracturing fluids. Little is known regarding the fate of these polymers under downhole conditions, which could have important environmental impacts including decisions on strategies for reuse or treatment of flowback water. The objective of this study was to evaluate the chemical degradation of high molecular weight PAM, including the effects of shale, oxygen, temperature, pressure, and salinity. Data were obtained with a slickwater fracturing fluid exposed to both a shale sample collected from a Marcellus outcrop and to Marcellus core samples at high pressures/temperatures (HPT) simulating downhole conditions. Based on size exclusion chromatography analyses, the peak molecular weight of the PAM was reduced by 2 orders of magnitude, from roughly 10 MDa to 200 kDa under typical HPT fracturing conditions. The rate of degradation was independent of pressure and salinity but increased significantly at high temperatures and in the presence of oxygen dissolved in fracturing fluids. Results were consistent with a free radical chain scission mechanism, supported by measurements of sub-µM hydroxyl radical concentrations. The shale sample adsorbed some PAM (∼30%), but importantly it catalyzed the chemical degradation of PAM, likely due to dissolution of Fe2+ at low pH. These results provide the first evidence of radical-induced degradation of PAM under HPT hydraulic fracturing conditions without additional oxidative breaker.


Assuntos
Fraturamento Hidráulico , Poluentes Químicos da Água , Resinas Acrílicas , Águas Residuárias
4.
Appl Environ Microbiol ; 83(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087535

RESUMO

Acid mine drainage (AMD) is a major environmental problem affecting tens of thousands of kilometers of waterways worldwide. Passive bioremediation of AMD relies on microbial communities to oxidize and remove iron from the system; however, iron oxidation rates in AMD environments are highly variable among sites. At Scalp Level Run (Cambria County, PA), first-order iron oxidation rates are 10 times greater than at other coal-associated iron mounds in the Appalachians. We examined the bacterial community at Scalp Level Run to determine whether a unique community is responsible for the rapid iron oxidation rate. Despite strong geochemical gradients, including a >10-fold change in the concentration of ferrous iron from 57.3 mg/liter at the emergence to 2.5 mg/liter at the base of the coal tailings pile, the bacterial community composition was nearly constant with distance from the spring outflow. Scalp Level Run contains many of the same taxa present in other AMD sites, but the community is dominated by two strains of Ferrovum myxofaciens, a species that is associated with high rates of Fe(II) oxidation in laboratory studies.IMPORTANCE Acid mine drainage pollutes more than 19,300 km of rivers and streams and 72,000 ha of lakes worldwide. Remediation is frequently ineffective and costly, upwards of $100 billion globally and nearly $5 billion in Pennsylvania alone. Microbial Fe(II) oxidation is more efficient than abiotic Fe(II) oxidation at low pH (P. C. Singer and W. Stumm, Science 167:1121-1123, 1970, https://doi.org/10.1126/science.167.3921.1121). Therefore, AMD bioremediation could harness microbial Fe(II) oxidation to fuel more-cost-effective treatments. Advances will require a deeper understanding of the ecology of Fe(II)-oxidizing microbial communities and the factors that control their distribution and rates of Fe(II) oxidation. We investigated bacterial communities that inhabit an AMD site with rapid Fe(II) oxidation and found that they were dominated by two operational taxonomic units (OTUs) of Ferrovum myxofaciens, a taxon associated with high laboratory rates of iron oxidation. This research represents a step forward in identifying taxa that can be used to enhance cost-effective AMD bioremediation.


Assuntos
Bactérias/metabolismo , Betaproteobacteria/metabolismo , Minas de Carvão , Compostos Férricos/química , Ferro/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Ácidos , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Betaproteobacteria/isolamento & purificação , Biodegradação Ambiental , Carvão Mineral , Microbiologia Ambiental , Concentração de Íons de Hidrogênio , Resíduos Industriais , Ferro/química , Consórcios Microbianos , Mineração , Oxirredução , Pennsylvania , Poluentes da Água
5.
Environ Sci Technol ; 51(15): 8851-8860, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28699344

RESUMO

Combining horizontal drilling with high volume hydraulic fracturing has increased extraction of hydrocarbons from low-permeability oil and gas (O&G) formations across the United States; accompanied by increased wastewater production. Surface water discharges of O&G wastewater by centralized waste treatment (CWT) plants pose risks to aquatic and human health. We evaluated the impact of surface water disposal of O&G wastewater from CWT plants upstream of the Conemaugh River Lake (dam controlled reservoir) in western Pennsylvania. Regulatory compliance data were collected to calculate annual contaminant loads (Ba, Cl, total dissolved solids (TDS)) to document historical industrial activity. In this study, two CWT plants 10 and 19 km upstream of a reservoir left geochemical signatures in sediments and porewaters corresponding to peak industrial activity that occurred 5 to 10 years earlier. Sediment cores were sectioned for the collection of paired samples of sediment and porewater, and analyzed for analytes to identify unconventional O&G wastewater disposal. Sediment layers corresponding to the years of maximum O&G wastewater disposal contained higher concentrations of salts, alkaline earth metals, and organic chemicals. Isotopic ratios of 226Ra/228Ra and 87Sr/86Sr identified that peak concentrations of Ra and Sr were likely sourced from wastewaters that originated from the Marcellus Shale formation.


Assuntos
Campos de Petróleo e Gás , Águas Residuárias , Poluentes Químicos da Água/análise , Pennsylvania , Rios , Água
6.
Appl Environ Microbiol ; 82(12): 3611-3621, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27084004

RESUMO

UNLABELLED: Two acid mine drainage (AMD) sites in the Appalachian bituminous coal basin were selected to enrich for Fe(II)-oxidizing microbes and measure rates of low-pH Fe(II) oxidation in chemostatic bioreactors. Microbial communities were enriched for 74 to 128 days in fed-batch mode, then switched to flowthrough mode (additional 52 to 138 d) to measure rates of Fe(II) oxidation as a function of pH (2.1 to 4.2) and influent Fe(II) concentration (80 to 2,400 mg/liter). Biofilm samples were collected throughout these operations, and the microbial community structure was analyzed to evaluate impacts of geochemistry and incubation time. Alpha diversity decreased as the pH decreased and as the Fe(II) concentration increased, coincident with conditions that attained the highest rates of Fe(II) oxidation. The distribution of the seven most abundant bacterial genera could be explained by a combination of pH and Fe(II) concentration. Acidithiobacillus, Ferrovum, Gallionella, Leptospirillum, Ferrimicrobium, Acidiphilium, and Acidocella were all found to be restricted within specific bounds of pH and Fe(II) concentration. Temporal distance, defined as the cumulative number of pore volumes from the start of flowthrough mode, appeared to be as important as geochemical conditions in controlling microbial community structure. Both alpha and beta diversities of microbial communities were significantly correlated to temporal distance in the flowthrough experiments. Even after long-term operation under nearly identical geochemical conditions, microbial communities enriched from the different sites remained distinct. While these microbial communities were enriched from sites that displayed markedly different field rates of Fe(II) oxidation, rates of Fe(II) oxidation measured in laboratory bioreactors were essentially the same. These results suggest that the performance of suspended-growth bioreactors for AMD treatment may not be strongly dependent on the inoculum used for reactor startup. IMPORTANCE: This study showed that different microbial communities enriched from two sites maintained distinct microbial community traits inherited from their respective seed materials. Long-term operation (up to 128 days of fed-batch enrichment followed by up to 138 days of flowthrough experiments) of these two systems did not lead to the same, or even more similar, microbial communities. However, these bioreactors did oxidize Fe(II) and remove total iron [Fe(T)] at very similar rates. These results suggest that the performance of suspended-growth bioreactors for AMD treatment may not be strongly dependent on the inoculum used for reactor startup. This would be advantageous, because system performance should be well constrained and predictable for many different sites.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Ferro/metabolismo , Consórcios Microbianos , Concentração de Íons de Hidrogênio , Oxirredução , Microbiologia do Solo , Fatores de Tempo
7.
Appl Environ Microbiol ; 81(6): 2189-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25595765

RESUMO

Water discharging from abandoned coal mines can contain extremely high manganese levels. Removing this metal is an ongoing challenge. Passive Mn(II) removal beds (MRBs) contain microorganisms that oxidize soluble Mn(II) to insoluble Mn(III/IV) minerals, but system performance is unpredictable. Using amplicon pyrosequencing, we profiled the bacterial, fungal, algal, and archaeal communities in four MRBs, performing at different levels, in Pennsylvania to determine whether they differed among MRBs and from surrounding soil and to establish the relative abundance of known Mn(II) oxidizers. Archaea were not detected; PCRs with archaeal primers returned only nontarget bacterial sequences. Fungal taxonomic profiles differed starkly between sites that remove the majority of influent Mn and those that do not, with the former being dominated by Ascomycota (mostly Dothideomycetes) and the latter by Basidiomycota (almost entirely Agaricomycetes). Taxonomic profiles for the other groups did not differ significantly between MRBs, but operational taxonomic unit-based analyses showed significant clustering by MRB with all three groups (P < 0.05). Soil samples clustered separately from MRBs in all groups except fungi, whose soil samples clustered loosely with their respective MRB. Known Mn(II) oxidizers accounted for a minor proportion of bacterial sequences (up to 0.20%) but a greater proportion of fungal sequences (up to 14.78%). MRB communities are more diverse than previously thought, and more organisms may be capable of Mn(II) oxidation than are currently known.


Assuntos
Bactérias/isolamento & purificação , Biota , Microbiologia Ambiental , Resíduos Industriais , Manganês/metabolismo , Microalgas/isolamento & purificação , Archaea , Bactérias/classificação , Bactérias/metabolismo , Minas de Carvão , Fungos , Microalgas/classificação , Microalgas/metabolismo , Dados de Sequência Molecular , Pennsylvania , Análise de Sequência de DNA
8.
Appl Environ Microbiol ; 81(4): 1242-50, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25501473

RESUMO

A legacy of coal mining in the Appalachians has provided a unique opportunity to study the ecological niches of iron-oxidizing microorganisms. Mine-impacted, anoxic groundwater with high dissolved-metal concentrations emerges at springs and seeps associated with iron oxide mounds and deposits. These deposits are colonized by iron-oxidizing microorganisms that in some cases efficiently remove most of the dissolved iron at low pH, making subsequent treatment of the polluted stream water less expensive. We used full-cycle rRNA methods to describe the composition of sediment communities at two geochemically similar acidic discharges, Upper and Lower Red Eyes in Somerset County, PA, USA. The dominant microorganisms at both discharges were acidophilic Gallionella-like organisms, "Ferrovum" spp., and Acidithiobacillus spp. Archaea and Leptospirillum spp. accounted for less than 2% of cells. The distribution of microorganisms at the two sites could be best explained by a combination of iron(II) concentration and pH. Populations of the Gallionella-like organisms were restricted to locations with pH>3 and iron(II) concentration of >4 mM, while Acidithiobacillus spp. were restricted to pH<3 and iron(II) concentration of <4 mM. Ferrovum spp. were present at low levels in most samples but dominated sediment communities at pH<3 and iron(II) concentration of >4 mM. Our findings offer a predictive framework that could prove useful for describing the distribution of microorganisms in acid mine drainage, based on readily accessible geochemical parameters.


Assuntos
Ácidos/metabolismo , Bactérias/isolamento & purificação , Carvão Mineral/microbiologia , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Carvão Mineral/análise , Sedimentos Geológicos/química , Mineração , Dados de Sequência Molecular , Oxirredução , Filogenia , Águas Residuárias/química
9.
Environ Sci Technol ; 49(6): 3557-65, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25723896

RESUMO

Nitroaromatic compounds (NACs) are ubiquitous environmental contaminants that are susceptible to biological and abiotic reduction. Prior works have found that for the abiotic reduction of NACs, the logarithm of the NACs' rate constants correlate with one-electron reduction potential values of the NACs (EH,NAC1) according to linear free energy relationships (LFERs). Here, we extend the application of LFERs to the bioreduction of NACs and to the abiotic reduction of NACs by bioreduced (and pasteurized) iron-bearing clay minerals. A linear correlation (R2=0.96) was found between the NACs' bioreduction rate constants (kobs) and EH,NAC1 values. The LFER slope of log kobs versus EH,NAC1/(2.303RT/F) was close to one (0.97), which implied that the first electron transfer to the NAC was the rate-limiting step of bioreduction. LFERs were also established between NAC abiotic reduction rate constants by bioreduced iron-bearing clay minerals (montmorillonite SWy-2 and nontronite NAu-2). The second-order NAC reduction rate constants (k) by bioreduced SWy-2 and NAu-2 were well correlated to EH,NAC1 (R2=0.97 for both minerals), consistent with bioreduction results. However, the LFER slopes of log k versus EH,NAC1/(2.303RT/F) were significantly less than one (0.48­0.50) for both minerals, indicating that the first electron transfer to the NAC was not the rate-limiting step of abiotic reduction. Finally, we demonstrate that the rate of 4-acetylnitrobenzene reduction by bioreduced SWy-2 and NAu-2 correlated to the reduction potential of the clay (EH,clay, R2=0.95 for both minerals), indicating that the clay reduction potential also influences its reactivity.


Assuntos
Silicatos de Alumínio/química , Compostos de Anilina , Ferro/química , Nitrobenzenos , Shewanella putrefaciens/metabolismo , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Argila , Nitrobenzenos/química , Nitrobenzenos/metabolismo , Oxirredução
10.
Environ Sci Technol ; 49(3): 1418-26, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25565314

RESUMO

Iron-bearing clay minerals are ubiquitous in the environment, and the clay-Fe(II)/Fe(III) redox couple plays important roles in abiotic reduction of several classes of environmental contaminants. We investigated the role of Fe-bearing clay minerals on the bioreduction of nitrobenzene. In experiments with Shewanella putrefaciens CN32 and excess electron donor, we found that the Fe-bearing clay minerals montmorillonite SWy-2 and nontronite NAu-2 enhanced nitrobenzene bioreduction. On short time scales (<50 h), nitrobenzene reduction was primarily biologically driven, but at later time points, nitrobenzene reduction by biologically formed structural Fe(II) in the clay minerals became increasingly important. We found that chemically reduced (dithionite) iron-bearing clay minerals reduced nitrobenzene more rapidly than biologically reduced iron-bearing clay minerals despite the minerals having similar structural Fe(II) concentrations. We also found that chemically reduced NAu-2 reduced nitrobenzene faster as compared to chemically reduced SWy-2. The different reactivity of SWy-2 versus NAu-2 toward nitrobenzene was caused by different forms of structural clay-Fe(II) in the clay minerals and different reduction potentials (Eh) of the clay minerals. Because most contaminated aquifers become reduced via biological activity, the reactivity of biogenic clay-Fe(II) toward reducible contaminants is particularly important.


Assuntos
Compostos Férricos/química , Nitrobenzenos/metabolismo , Shewanella putrefaciens/metabolismo , Silicatos/química , Nitrobenzenos/química , Oxirredução
11.
Environ Sci Technol ; 48(5): 2750-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24512199

RESUMO

Iron-bearing phyllosilicate minerals help establish the hydrogeological and geochemical conditions of redox transition zones because of their small size, limited hydraulic conductivity, and redox buffering capacity. The bioreduction of soluble U(VI) to sparingly soluble U(IV) can promote the reduction of clay-Fe(III) through valence cycling. The reductive precipitation of U(VI) to uraninite was previously reported to occur only after a substantial percentage of clay-Fe(III) had been reduced. Using improved analytical techniques, we show that concomitant bioreduction of both U(VI) and clay-Fe(III) by Shewanella putrefaciens CN32 can occur. Soluble electron shuttles were previously shown to enhance both the rate and extent of clay-Fe(III) bioreduction. Using extended incubation periods, we show that electron shuttles enhance only the rate of reduction (overcoming a kinetic limitation) and not the final extent of reduction (a thermodynamic limitation). The first 20% of clay-Fe(III) in nontronite NAu-2 was relatively "easy" (i.e., rapid) to bioreduce; the next 15% of clay-Fe(III) was "harder" (i.e., kinetically limited) to bioreduce, and the remaining 65% of clay-Fe(III) was effectively biologically unreducible. In abiotic experiments with NAu-2 and biogenic uraninite, 16.4% of clay-Fe(III) was reduced in the presence of excess uraninite. In abiotic experiments with NAu-2 and reduced anthraquinone 2,6-disulfonate (AH2DS), 18.5-19.1% of clay-Fe(III) was reduced in the presence of excess and variable concentrations of AH2DS. A thermodynamic model based on published values of the nonstandard state reduction potentials at pH 7.0 (E'H) showed that the abiotic reactions between NAu-2 and uraninite had reached an apparent equilibrium. This model also showed that the abiotic reactions between NAu-2 and AH2DS had reached an apparent equilibrium. The final extent of clay-Fe(III) reduction correlated well with the standard state reduction potential at pH 7.0 (E°'H) of all of the reductants used in these experiments (AH2DS, CN32, dithionite, and uraninite).


Assuntos
Ferro/metabolismo , Minerais/metabolismo , Shewanella putrefaciens/metabolismo , Urânio/metabolismo , Silicatos de Alumínio , Biodegradação Ambiental , Argila , Elétrons , Compostos Férricos/química , Compostos Férricos/metabolismo , Ferro/química , Cinética , Minerais/química , Oxirredução , Termodinâmica
12.
Environ Sci Technol ; 48(16): 9246-54, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25072394

RESUMO

Acid mine drainage (AMD) is a major worldwide environmental threat to surface and groundwater quality. Microbial low-pH Fe(II) oxidation could be exploited for cost-effective AMD treatment; however, its use is limited because of uncertainties associated with its rate and ability to remove Fe from solution. We developed a thermodynamic-based framework to evaluate the kinetics of low-pH Fe(II) oxidation. We measured the kinetics of low-pH Fe(II) oxidation at five sites in the Appalachian Coal Basin in the US and three sites in the Iberian Pyrite Belt in Spain and found that the fastest rates of Fe(II) oxidation occurred at the sites with the lowest pH values. Thermodynamic calculations showed that the Gibbs free energy of Fe(II) oxidation (ΔG(oxidation)) was also most negative at the sites with the lowest pH values. We then conducted two series of microbial Fe(II) oxidation experiments in laboratory-scale chemostatic bioreactors operated through a series of pH values (2.1-4.2) and found the same relationships between Fe(II) oxidation kinetics, ΔG(oxidation), and pH. Conditions that favored the fastest rates of Fe(II) oxidation coincided with higher Fe(III) solubility. The solubility of Fe(III) minerals, thus plays an important role on Fe(II) oxidation kinetics. Methods to incorporate microbial low-pH Fe(II) oxidation into active and passive AMD treatment systems are discussed in the context of these findings. This study presents a simplified model that describes the relationship between free energy and microbial kinetics and should be broadly applicable to many biogeochemical systems.


Assuntos
Ferro/química , Região dos Apalaches , Concentração de Íons de Hidrogênio , Resíduos Industriais , Cinética , Mineração , Oxirredução , Espanha , Termodinâmica
13.
Sci Total Environ ; 919: 170807, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336068

RESUMO

Produced water from conventional oil and gas wells (O&G PW) is beneficially reused as an inexpensive alternative to commercial dust suppressants which minimize inhalable particulate matter (PM10) from unpaved roads. The efficacy and environmental impacts of using O&G PW instead of commercial products have not been extensively investigated, although O&G PW has been used for dust suppression for decades and often has elevated concentrations of environmental pollutants. In this study, the effectiveness of O&G PW is compared to commercial products under variable humidity conditions by measuring total generated PM10 emissions from treated road aggregate discs. To measure environmental impacts, model roadbeds were treated with six O&G PW and commercial products then subjected to a simulated two-year, 24-h storm event. Generated runoff water was collected and characterized. In efficacy studies, O&G PW offered variable dust reduction (10-85 %) compared to rainwater controls under high humidity (50 %) conditions but performed similarly or worse than controls when humidity was low (20 %). Conversely, all but two commercial products reduced dust emissions by over 90 % regardless of humidity. In rainfall-runoff experiments, roads treated with O&G PWs and CaCl2 Brine generated runoff that was hypersaline, indicating that mobilization of soluble salts could contribute to freshwater salinization. Though most runoff concentrations were highest from roadbeds treated with CaCl2 Brine, runoff from roadbeds treated with O&G PW had the highest concentrations of combined radium (83.6 pCi/L), sodium (3560 mg/L), and suspended solids (5330 mg/L). High sodium concentrations likely dispersed clay particles, which increased road mass loss by 47.2 kg solids/km/storm event compared to rainwater controls. Roadbeds treated with CaCl2 Brine, which had low sodium concentrations, reduced solid road mass loss by 98.1 kg solids/km/storm event. Based on this study, O&G PW do not perform as well as commercial products and pose unique risks to environmental health.

14.
Sci Total Environ ; 947: 174588, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38981550

RESUMO

Global Li production will require a ∼500 % increase to meet 2050 projected energy storage demands. One potential source is oil and gas wastewater (i.e., produced water or brine), which naturally has high total dissolved solids (TDS) concentrations, that can also be enriched in Li (>100 mg/L). Understanding the sources and mechanisms responsible for high naturally-occurring Li concentrations can aid in efficient targeting of these brines. The isotopic composition (δ7Li, δ11B, δ138Ba) of produced water and core samples from the Utica Shale and Point Pleasant Formation (UPP) in the Appalachian Basin, USA indicates that depth-dependent thermal maturity and water-rock interaction, including diagenetic clay mineral transformations, likely control Li concentrations. A survey of Li content in produced waters throughout the USA indicates that Appalachian Basin brines from the Marcellus Shale to the UPP have the potential for economic resource recovery.

15.
Environ Pollut ; 334: 122184, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37453689

RESUMO

Across the United States, road palliatives are applied to roads for maintenance operations that improve road safety. In the winter, solid rock salts and brine solutions are used to reduce the accumulation of snow and ice, while in the summer, dust suppressants are used to minimize fugitive dust emissions. Many of these products are chloride-based salts that have been linked to freshwater salinization, toxicity to aquatic organisms, and damage to infrastructure. To minimize these impacts, organic products have been gaining attention, though their widespread adoption has been limited due to their higher cost. In some states, using produced water from conventionally drilled oil and gas wells (OGPWs) on roads is permitted as a cost-effective alternative to commercial products, despite its typically elevated concentrations of heavy metals, radioactivity, and organic micropollutants. In this study, 17 road palliatives used for winter and summer road maintenance were collected and their chemical composition and potential human toxicity were characterized. Results from this study demonstrated that liquid brine solutions had elevated levels of trace metals (Zn, Cu, Sr, Li) that could pose risks to human and environmental health. The radium activity of liquid calcium chloride products was comparable to the activity of OGPWs and could be a significant source of radium to the environment. The organic fractions of evaluated OGPWs and chloride-based products posed little risk to human health. However, organic-based dust suppressants regulated toxicity pathways related to xenobiotic metabolism, lipid metabolism, endocrine disruption, and oxidative stress, indicating their use could lead to environmental harm and health risks to operators handing these products and residents living near treated roads.


Assuntos
Metais Pesados , Rádio (Elemento) , Humanos , Sais , Cloretos , Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Metais Pesados/análise , Poeira/análise
16.
Environ Sci Technol ; 46(21): 11995-2002, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23075386

RESUMO

Iron-bearing phyllosilicates strongly influence the redox state and mobility of uranium because of their limited hydraulic conductivity, high specific surface area, and redox reactivity. Standard extraction procedures cannot be accurately applied for the determination of clay-Fe(II/III) and U(IV/VI) in clay mineral-U suspensions such that advanced spectroscopic techniques are required. Instead, we developed and validated a sequential extraction method for determination of clay-Fe(II/III) and U(IV/VI) in clay-U suspensions. In our so-called "H(3)PO(4)-HF-H(2)SO(4) sequential extraction" method, H(3)PO(4)-H(2)SO(4) is used first to solubilize and remove U, and the remaining clay pellet is subject to HF-H(2)SO(4) digestion. Physical separation of U and clay eliminates valence cycling between U(IV/VI) and clay-Fe(II/III) that otherwise occurred in the extraction solutions and caused analytical discrepancies. We further developed an "automated anoxic KPA" method to measure soluble U(VI) and total U (calculate U(IV) by difference) and modified the conventional HF-H(2)SO(4) digestion method to eliminate a series of time-consuming weighing steps. We measured the kinetics of uraninite oxidation by nontronite using this sequential extraction method and anoxic KPA method and measured a stoichiometric ratio of 2.19 ± 0.05 mol clay-Fe(II) produced per mol U(VI) produced (theoretical value of 2.0). We found that we were able to recover 98.0-98.5% of the clay Fe and 98.1-98.5% of the U through the sequential extractions. Compared to the theoretical stoichiometric ratio of 2.0, the parallel extractions of 0.5 M HCl for clay-Fe(II) and 1 M NaHCO(3) for U(VI) leached two-times more Fe(II) than U(VI). The parallel extractions of HF-H(2)SO(4) for clay Fe(II) and 1 M NaHCO(3) for U(VI) leached six-times more Fe(II) than U(VI).


Assuntos
Compostos Férricos/análise , Compostos Ferrosos/análise , Silicatos/química , Compostos de Urânio/análise , Fracionamento Químico/métodos , Compostos Férricos/química , Compostos Ferrosos/química , Ácido Fluorídrico/química , Bicarbonato de Sódio/química , Ácidos Sulfúricos/química , Compostos de Urânio/química
17.
Front Bioeng Biotechnol ; 10: 867321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910036

RESUMO

Cueva de la Mora is a permanently stratified acidic pit lake with extremely high concentrations of heavy metals at depth. In order to evaluate the potential for in situ sulfide production, we characterized the microbial community in the deep layer using metagenomics and metatranscriptomics. We retrieved 18 high quality metagenome-assembled genomes (MAGs) representing the most abundant populations. None of the MAGs were closely related to either cultured or non-cultured organisms from the Genome Taxonomy or NCBI databases (none with average nucleotide identity >95%). Despite oxygen concentrations that are consistently below detection in the deep layer, some archaeal and bacterial MAGs mapped transcripts of genes for sulfide oxidation coupled with oxygen reduction. Among these microaerophilic sulfide oxidizers, mixotrophic Thermoplasmatales archaea were the most numerous and represented 24% of the total community. Populations associated with the highest predicted in situ activity for sulfate reduction were affiliated with Actinobacteria, Chloroflexi, and Nitrospirae phyla, and together represented about 9% of the total community. These MAGs, in addition to a less abundant Proteobacteria MAG in the genus Desulfomonile, contained transcripts of genes in the Wood-Ljungdahl pathway. All MAGs had significant genetic potential for organic carbon oxidation. Our results indicate that novel acidophiles are contributing to biosulfidogenesis in the deep layer of Cueva de la Mora, and that in situ sulfide production is limited by organic carbon availability and sulfur oxidation.

18.
ISME J ; 16(12): 2666-2679, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36123522

RESUMO

Cueva de la Mora is a permanently stratified acidic pit lake and a model system for extreme acid mine drainage (AMD) studies. Using a combination of amplicon sequencing, metagenomics and metatranscriptomics we performed a taxonomically resolved analysis of microbial contributions to carbon, sulfur, iron, and nitrogen cycling. We found that active green alga Coccomyxa onubensis dominated the upper layer and chemocline. The chemocline had activity for iron(II) oxidation carried out by populations of Ca. Acidulodesulfobacterium, Ferrovum, Leptospirillium, and Armatimonadetes. Predicted activity for iron(III) reduction was only detected in the deep layer affiliated with Proteobacteria. Activity for dissimilatory nitrogen cycling including nitrogen fixation and nitrate reduction was primarily predicted in the chemocline. Heterotrophic archaeal populations with predicted activity for sulfide oxidation related to uncultured Thermoplasmatales dominated in the deep layer. Abundant sulfate-reducing Desulfomonile and Ca. Acidulodesulfobacterium populations were active in the chemocline. In the deep layer, uncultured populations from the bacterial phyla Actinobacteria, Chloroflexi, and Nitrospirae contributed to both sulfate reduction and sulfide oxidation. Based on this information we evaluated the potential for sulfide mineral precipitation in the deep layer as a tool for remediation. We argue that sulfide precipitation is not limited by microbial genetic potential but rather by the quantity and quality of organic carbon reaching the deep layer as well as by oxygen additions to the groundwater enabling sulfur oxidation. Addition of organic carbon and elemental sulfur should stimulate sulfate reduction and limit reoxidation of sulfide minerals.


Assuntos
Ferro , Lagos , Lagos/microbiologia , Carbono , Enxofre , Bactérias/genética , Sulfatos , Ácidos , Sulfetos , Oxirredução , Nitrogênio
19.
Appl Environ Microbiol ; 77(2): 545-54, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097582

RESUMO

Lower Red Eyes is an acid mine drainage site in Pennsylvania where low-pH Fe(II) oxidation has created a large, terraced iron mound downstream of an anoxic, acidic, metal-rich spring. Aqueous chemistry, mineral precipitates, microbial communities, and laboratory-based Fe(II) oxidation rates for this site were analyzed in the context of a depositional facies model. Depositional facies were defined as pools, terraces, or microterracettes based on cm-scale sediment morphology, irrespective of the distance downstream from the spring. The sediments were composed entirely of Fe precipitates and cemented organic matter. The Fe precipitates were identified as schwertmannite at all locations, regardless of facies. Microbial composition was studied with fluorescence in situ hybridization (FISH) and transitioned from a microaerophilic, Euglena-dominated community at the spring, to a Betaproteobacteria (primarily Ferrovum spp.)-dominated community at the upstream end of the iron mound, to a Gammaproteobacteria (primarily Acidithiobacillus)-dominated community at the downstream end of the iron mound. Microbial community structure was more strongly correlated with pH and geochemical conditions than depositional facies. Intact pieces of terrace and pool sediments from upstream and downstream locations were used in flowthrough laboratory reactors to measure the rate and extent of low-pH Fe(II) oxidation. No change in Fe(II) concentration was observed with (60)Co-irradiated sediments or with no-sediment controls, indicating that abiotic Fe(II) oxidation was negligible. Upstream sediments attained lower effluent Fe(II) concentrations compared to downstream sediments, regardless of depositional facies.


Assuntos
Biodiversidade , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/parasitologia , Metagenoma , Geografia , Sedimentos Geológicos/química , Ferro/metabolismo , Minerais/análise , Dados de Sequência Molecular , Oxirredução , Pennsylvania , Análise de Sequência de DNA , Água/química
20.
Sci Total Environ ; 799: 149347, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426301

RESUMO

The effectiveness of oil and gas produced water (OGPW) applied to unpaved roads to reduce particulate matter (PM10) generation has not been well-characterized. Here we quantify the efficacy of OGPW compared to commercial and alternative byproducts as dust suppressants applied to unpaved roads and estimate efficacy of a dust suppressant extrapolated from both lab experiments and published data for OGPW across U.S. states. Both treated and untreated OGPW, simulated brines, and commercial dust suppressants were characterized by major and trace element composition and then applied to road aggregate in the laboratory. PM10 generation after treatment was quantified, both before and after simulated rain events to assess the need for multiple applications. We found the dust suppression efficacy of all OGPW to be less than commercial products and alternative byproducts such as waste soybean oil. In addition, OGPW lost efficacy following simulated rain events, which would require repeated applications of OGPW to maintain dust suppression. The dust suppression efficacy of OGPW can be estimated based on two chemical measurements, the sodium absorption ratio (SAR) and the total dissolved solids (TDS). OGPW with the lowest SAR and highest TDS performed best as dust suppressants while high SAR and lower TDS led to greater dust generation.


Assuntos
Poluentes Atmosféricos , Poeira , Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental , Material Particulado/análise , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA