Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014518

RESUMO

Reducing the amount of noble metals in catalysts for electrochemical conversion devices is paramount if these devices are to be commercialized. Taking advantage of the high degree of particle property control displayed by the sonochemical method, we set out to synthesize Cu@Pt bimetallic nanocatalysts in an effort to improve the mass activity towards the hydrogen evolution reaction. At least 17 times higher mass activity was found for the carbon supported Cu@Pt bimetallic nanocatalyst (737 mA mg−1, E = −20 mV) compared to carbon supported Pt nanocatalysts prepared with the same ultrasound conditions (44 mA mg−1, E = −20 mV). The synthesis was found to proceed with the sonochemical formation of Cu and Cu2O nanoparticles with the addition of PtCl4 leading to galvanic displacement of the Cu-nanoparticles and the formation of a Pt-shell around the Cu-core.

2.
Ultrason Sonochem ; 103: 106794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38364482

RESUMO

Large scale production of electrocatalysts for electrochemical energy conversion devices such as proton exchange membrane fuel cells must be developed to reduce their cost. The current chemical reduction methods used for this synthesis suffer from problems with achieving similar particle properties such as particle size and catalytic activity when scaling up the volume or the precursor concentration. The continuous production of reducing agents through the sonochemical synthesis method could help maintain the reducing conditions (and also the particle properties) upon increasing the reactor volume. In this work we demonstrate that the reducing conditions of Pt-nanoparticles are indeed maintained when the reactor volume is increased from 200 mL to 800 mL. Similar particle sizes, 2.1(0.3) nm at 200 mL and 2.3(0.4) nm at 800 mL, and catalytic activities towards the oxygen reduction reaction (ORR) are maintained as well. The reducing conditions were assessed through TiOSO4 dosimetry, sonochemiluminesence imaging, acoustic power measurements, and Pt(II) reduction rate measurements. Cyclic voltammetry, CO-stripping, hydrogen evolution measurements, ORR measurements, and electron microscopy were used to evaluate the catalytic activity and particle size. The similar particle properties displayed from the two reactor volumes suggest that the sonochemical synthesis of Pt-nanoparticles is suitable for large scale production.

3.
Sci Rep ; 13(1): 6183, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061599

RESUMO

Maintaining nanoparticle properties when scaling up a chemical synthesis is challenging due to the complex interplay between reducing agents and precursors. A sonochemical synthesis route does not require the addition of reducing agents as they are instead being continuously generated in-situ by ultrasonic cavitation throughout the reactor volume. To optimize the sonochemical synthesis of nanoparticles, understanding the role of radical scavengers is paramount. In this work we demonstrate that optimum scavenger concentrations exist at which the rate of Ag-nanoparticle formation is maximized. Titanyl dosimetry experiments were used in conjunction with Ag-nanoparticle formation rates to determine these optimum scavenger concentrations. It was found that more hydrophobic scavengers require lower optimum concentrations with 1-butanol < 2-propanol < ethanol < methanol < ethylene glycol. However, the optimum concentration is shifted by an order of magnitude towards higher concentrations when pyrolytic decomposition products contribute to the reduction. The reduction rate is also enhanced considerably.

4.
Environ Sci Technol ; 46(21): 12203-8, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22962998

RESUMO

Energy extraction based on capacitive Donnan potential (CDP) is a recently suggested technique for sustainable power generation. CDP combines the use of ion-exchange membranes and porous carbon electrodes to convert the Gibbs free energy of mixing sea and river water into electric work. The electrodes geometry has a relevant impact on internal resistance and overall performance in CDP. In this work, we present the first effort to use wire-shaped electrodes and its suitability for improving CDP. Analytical evaluation and electrical measurements confirm a strong nonlinear decrease in internal resistance for distances between electrodes smaller than 3 mm. We also demonstrated that we get more power per material invested when compared to traditional flat plate designs. These findings show the advantages of this design for further development of CDP into a mature technology.


Assuntos
Fontes Geradoras de Energia , Salinidade , Capacitância Elétrica , Eletrodos , Água Doce , Água do Mar
5.
Ultrason Sonochem ; 85: 105991, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35381486

RESUMO

Optimizing the surface area of nanoparticles is key to achieving high catalytic activities for electrochemical energy conversion devices. In this work, the frequency range (200 kHz-500 kHz) for maximum sonochemical radical formation was investigated for the sonochemical synthesis of Pt-nanoparticles to assess whether an optimum frequency exists or if the entire range provides reproducible particle properties. Through physical and electrochemical characterization, it was found that the frequency dependent mechanical effects of ultrasound resulted in smaller, more open agglomerates at lower frequencies with agglomerate sizes of (238 ± 4) nm at 210 kHz compared to (274 ± 2) nm at 326 kHz, and electrochemical surface areas of (12.4 ± 0.9) m2g-1 at 210 kHz compared to (3.4 ± 0.5) m2g-1 at 326 kHz. However, the primary particle size (2.1 nm) and the catalytic activity towards hydrogen evolution, (19 ± 2) mV at 10mA cm2,remained unchanged over the entire frequency range. Highly reproducible Pt-nanoparticles are therefore easily attainable within a broad range of ultrasonic frequencies for the sonochemical synthesis route.


Assuntos
Nanopartículas , Catálise , Nanopartículas/química , Tamanho da Partícula
6.
Ultrason Sonochem ; 73: 105474, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33578279

RESUMO

In this study, we investigated an alternative method for the chemical CO2 reduction reaction in which power ultrasound (488 kHz ultrasonic plate transducer) was applied to CO2-saturated (up to 3%) pure water, NaCl and synthetic seawater solutions. Under ultrasonic conditions, the converted CO2 products were found to be mainly CH4, C2H4 and C2H6 including large amount of CO which was subsequently converted into CH4. We have found that introducing molecular H2 plays a crucial role in the CO2 conversion process and that increasing hydrogen concentration increased the yields of hydrocarbons. However, it was observed that at higher hydrogen concentrations, the overall conversion decreased since hydrogen, a diatomic gas, is known to decrease cavitational activity in liquids. It was also found that 1.0 M NaCl solutions saturated with 2% CO2 + 98% H2 led to maximum hydrocarbon yields (close to 5%) and increasing the salt concentrations further decreased the yield of hydrocarbons due to the combined physical and chemical effects of ultrasound. It was shown that CO2 present in a synthetic industrial flue gas (86.74% N2, 13% CO2, 0.2% O2 and 600 ppm of CO) could be converted into hydrocarbons through this method by diluting the flue gas with hydrogen. Moreover, it was observed that in addition to pure water, synthetic seawater can also be used as an ultrasonicating media for the sonochemical process where the presence of NaCl improves the yields of hydrocarbons by ca. 40%. We have also shown that by using low frequency high-power ultrasound in the absence of catalysts, it is possible to carry out the conversion process at ambient conditions i.e., at room temperature and pressure. We are postulating that each cavitation bubble formed during ultrasonication act as a "micro-reactor" where the so-called Sabatier reaction -CO2+4H2→UltrasonicationCH4+2H2O - takes place upon collapse of the bubble. We are naming this novel approach as the "Islam-Pollet-Hihn process".

7.
Ultrason Sonochem ; 72: 105401, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33341073

RESUMO

The electrochemical CO2 reduction reaction (CO2RR) on polycrystalline copper (Cu) electrode was performed in a CO2-saturated 0.10 M Na2CO3 aqueous solution at 278 K in the absence and presence of low-frequency high-power ultrasound (f = 24 kHz, PT ~ 1.23 kW/dm3) in a specially and well-characterized sonoelectrochemical reactor. It was found that in the presence of ultrasound, the cathodic current (Ic) for CO2 reduction increased significantly when compared to that in the absence of ultrasound (silent conditions). It was observed that ultrasound increased the faradaic efficiency of carbon monoxide (CO), methane (CH4) and ethylene (C2H4) formation and decreased the faradaic efficiency of molecular hydrogen (H2). Under ultrasonication, a ca. 40% increase in faradaic efficiency was obtained for methane formation through the CO2RR. In addition, and interestingly, water-soluble CO2 reduction products such as formic acid and ethanol were found under ultrasonic conditions whereas under silent conditions, these expected electrochemical CO2RR products were absent. It was also found that power ultrasound increases the formation of smaller hydrocarbons through the CO2RR and may initiate new chemical reaction pathways through the sonolytic di-hydrogen splitting yielding other products, and simultaneously reducing the overall molecular hydrogen gas formation.

8.
Ultrason Sonochem ; 66: 105087, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32234676

RESUMO

For the first time, we have investigated the beneficial effects of non-cavitating coupling fluids and their moderate overpressures in enhancing mass-transfer and acoustic energy transfer in a double cell micro-sonoreactor. Silicon and engine oils of different viscosities were used as non-cavitating coupling fluids. A formulated monoethylene glycol (FMG), which is a regular cooling fluid, was also used as reference. It was found that silicon oil yielded a maximum acoustic energy transfer (3.05 W/cm2) from the double jacketed cell to the inner cell volume, at 1 bar of coupling fluid overpressure which was 2.5 times higher than the regular FMG cooling fluid. It was also found that the low viscosity engine oil had a higher acoustic energy value than that of the high viscosity engine oil. In addition, linear sweep voltammograms (LSV) were recorded for the quasi-reversible Fe2+/Fe3+ redox couple (equimolar, 5 × 10-3 M) on a Pt electrode in order to determine the mass-transport limited current density (jlim) and the dimensionless Sherwood number (Sh). From the LSV data, a statistical analysis was performed in order to determine the contribution of acoustic cavitation in the current density variation |Δj|average. It was found that silicon oil at 1 bar exhibited a maximum current density variation, |Δj|average of ~2 mA/cm2 whereas in the absence of overpressure, the high viscosity engine oil led to a maximum |Δj|average which decreased gradually with increasing coupling fluid overpressure. High viscosity engine oil gave a maximum Sh number even without any overpressure which decreased gradually with increasing overpressure. The Sh number for silicon oil increased with increasing overpressure and reached a maximum at 1 bar of overpressure. For any sonoelectrochemical processes, if the aim is to achieve high mass-transfer and acoustic energy transfer, then silicon oil at 1 bar of overpressure is a suitable candidate to be used as a coupling fluid.

9.
Ultrason Sonochem ; 51: 533-555, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30442455

RESUMO

Reserves of fossil fuels such as coal, oil and natural gas on earth are finite. The continuous use and burning of these fossil fuel resources in the industrial, domestic and transport sectors has resulted in the extremely high emission of greenhouse gases, GHGs (e.g. CO2) and solid particulates into the atmosphere. Therefore, it is necessary to explore pollution free and more efficient energy sources in order to replace depleting fossil fuels. The use of hydrogen (H2) as an alternative fuel source is particularly attractive due to its very high specific energy compared to other conventional fuels and its zero GHG emission when used in a fuel cell. Hydrogen can be produced through various process technologies such as thermal, electrolytic, photolytic and biological processes. Thermal processes include gas reforming, renewable liquid and biooil processing, biomass and coal gasification; however, these processes release a huge amount of greenhouse gases. Production of electrolytic hydrogen from water is an attractive method to produce clean hydrogen. It could even be a more promising technology when combining water electrolysis with power ultrasound to produce hydrogen efficiently where sonication enhances the electrolytic process in several ways such as enhanced mass transfer, removal of hydrogen and oxygen (O2) gas bubbles and activation of the electrode surface. In this review, production of hydrogen through sonochemical and sonoelectrochemical methods along with a brief description of current hydrogen production methods and power ultrasound are discussed.

10.
Ultrason Sonochem ; 59: 104711, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31421622

RESUMO

In recent years, the synthesis and use of nanoparticles have been of special interest among the scientific communities due to their unique properties and applications in various advanced technologies. The production of these materials at industrial scale can be difficult to achieve due to high cost, intense labour and use of hazardous solvents that are often required by traditional chemical synthetic methods. Sonoelectrochemistry is a hybrid technique that combines ultrasound and electrochemistry in a specially designed electrochemical setup. This technique can be used to produce nanomaterials with controlled sizes and shapes. The production of nanoparticles by sonoelectrochemistry as a technique offers many advantages: (i) a great enhancement in mass transport near the electrode, thereby altering the rate, and sometimes the mechanism of the electrochemical reactions, (ii) a modification of surface morphology through cavitation jets at the electrode-electrolyte interface, usually causing an increase of the surface area and (iii) a thinning of the electrode diffusion layer thickness and therefore ion depletion. The scalability of sonoelectrochemistry for producing nanomaterials at industrial scale is also very plausible due to its "one-pot" synthetic approach. Recent advancements in sonoelectrochemistry for producing various types of nanomaterials are briefly reviewed in this article. It is with hope that the presentation of these studies therein can generate more interest in the field to "catalyze" future investigations in novel nanomaterial development and industrial scale-up studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA