Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163683

RESUMO

Matrix remodeling could be an important mode of action of multipotent mesenchymal stromal cells (MSC) in extracellular matrix (ECM) disease, but knowledge is limited in this respect. As MSC are well-known to adapt their behavior to their environment, we aimed to investigate if their mode of action would change in response to healthy versus pathologically altered ECM. Human MSC-derived ECM was produced under different culture conditions, including standard culture, culture on Matrigel-coated dishes, and stimulation with the pro-fibrotic transforming growth factor-ß1 (TGFß1). The MSC-ECM was decellularized, characterized by histochemistry, and used as MSC culture substrate reflecting different ECM conditions. MSC were cultured on the different ECM substrates or in control conditions for 2 days. Culture on ECM increased the presence of surface molecules with ECM receptor function in the MSC, demonstrating an interaction between MSC and ECM. In MSC cultured on Matrigel-ECM and TGFß1-ECM, which displayed a fibrosis-like morphology, gene expression of collagens and decorin, as well as total matrix metalloproteinase (MMP) activity in the supernatant were decreased as compared with control conditions. These results demonstrated that MSC adapt to their ECM environment, which may include pathological adaptations that could compromise therapeutic efficacy.


Assuntos
Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Sobrevivência Celular , Células Cultivadas , Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Humanos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Receptores de Superfície Celular/metabolismo , Especificidade por Substrato , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo
2.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884602

RESUMO

Tendon lesions are common sporting injuries in humans and horses alike. The healing process of acute tendon lesions frequently results in fibrosis and chronic disease. In horses, local mesenchymal stromal cell (MSC) injection is an accepted therapeutic strategy with positive influence on acute lesions. Concerning the use of MSCs in chronic tendon disease, data are scarce but suggest less therapeutic benefit. However, it has been shown that MSCs can have a positive effect on fibrotic tissue. Therefore, we aimed to elucidate the interplay of MSCs and healthy or chronically diseased tendon matrix. Equine MSCs were cultured either as cell aggregates or on scaffolds from healthy or diseased equine tendons. Higher expression of tendon-related matrix genes and tissue inhibitors of metalloproteinases (TIMPs) was found in aggregate cultures. However, the tenogenic transcription factor scleraxis was upregulated on healthy and diseased tendon scaffolds. Matrix metalloproteinase (MMPs) expression and activity were highest in healthy scaffold cultures but showed a strong transient decrease in diseased scaffold cultures. The release of glycosaminoglycan and collagen was also higher in scaffold cultures, even more so in those with tendon disease. This study points to an early suppression of MSC matrix remodeling activity by diseased tendon matrix, while tenogenic differentiation remained unaffected.


Assuntos
Microambiente Celular , Matriz Extracelular/patologia , Doenças dos Cavalos/patologia , Células-Tronco Mesenquimais/patologia , Tendinopatia/patologia , Tendões/patologia , Alicerces Teciduais/química , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Doença Crônica , Matriz Extracelular/metabolismo , Doenças dos Cavalos/metabolismo , Cavalos , Células-Tronco Mesenquimais/metabolismo , Tendinopatia/metabolismo , Tendões/metabolismo
3.
Biotechnol Bioeng ; 116(6): 1417-1426, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30739319

RESUMO

Multipotent mesenchymal stromal cells (MSC) and MSC-derived products have emerged as promising therapeutic tools. To fully exploit their potential, further mechanistic studies are still necessary and bioprocessing needs to be optimized, which requires an abundant supply of functional MSC for basic research. To address this need, here we used a novel technology to establish a human adipose-derived MSC line with functional characteristics representative of primary MSC. Primary MSC were isolated and subjected to lentiviral transduction with a library of expansion genes. Clonal cell lines were generated and evaluated on the basis of their morphology, immunophenotype, and proliferation potential. One clone (K5 iMSC) was then selected for further characterization. This clone had integrated a specific transgene combination including genes involved in stemness and maintenance of adult stem cells. Favorably, the K5 iMSC showed cell characteristics resembling juvenile MSC, as they displayed a shorter cell length and enhanced migration and proliferation compared with the non-immortalized original primary MSC (p < 0.05). Still, their immunophenotype and differentiation potential corresponded to the original primary MSC and the MSC definition criteria, and cytogenetic analyses revealed no clonal aberrations. We conclude that the technology used is applicable to generate functional MSC lines for basic research and possible future bioprocessing applications.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Idoso , Diferenciação Celular , Linhagem Celular , Movimento Celular , Separação Celular/métodos , Células Cultivadas , Feminino , Humanos , Cariótipo , Lentivirus/genética , Células-Tronco Mesenquimais/metabolismo , Transdução Genética/métodos , Transgenes
4.
Int J Mol Sci ; 20(21)2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31684150

RESUMO

Transforming growth factor beta 3 (TGFß3) promotes tenogenic differentiation and may enhance tendon regeneration in vivo. This study aimed to apply TGFß3 absorbed in decellularized equine superficial digital flexor tendon scaffolds, and to investigate the bioactivity of scaffold-associated TGFß3 in an in vitro model. TGFß3 could effectively be loaded onto tendon scaffolds so that at least 88% of the applied TGFß3 were not detected in the rinsing fluid of the TGFß3-loaded scaffolds. Equine adipose tissue-derived multipotent mesenchymal stromal cells (MSC) were then seeded on scaffolds loaded with 300 ng TGFß3 to assess its bioactivity. Both scaffold-associated TGFß3 and TGFß3 dissolved in the cell culture medium, the latter serving as control group, promoted elongation of cell shapes and scaffold contraction (p < 0.05). Furthermore, scaffold-associated and dissolved TGFß3 affected MSC musculoskeletal gene expression in a similar manner, with an upregulation of tenascin c and downregulation of other matrix molecules, most markedly decorin (p < 0.05). These results demonstrate that the bioactivity of scaffold-associated TGFß3 is preserved, thus TGFß3 application via absorption in decellularized tendon scaffolds is a feasible approach.


Assuntos
Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Tendões/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Fator de Crescimento Transformador beta3/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Decorina/genética , Decorina/metabolismo , Regulação da Expressão Gênica , Cavalos , Humanos , Células-Tronco Mesenquimais/metabolismo , Sistema Musculoesquelético/metabolismo , Tenascina/genética , Tenascina/metabolismo , Tendões/citologia
5.
Cytometry A ; 93(1): 60-72, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28926198

RESUMO

For clinical applications of multipotent mesenchymal stromal cells (MSCs), serum-free culture is preferable to standardize cell products and prevent contamination with pathogens. In contrast to human MSCs, knowledge on serum-free culture of large animal MSCs is limited, despite its relevance for preclinical studies and development of veterinary cellular therapeutics. This study aimed to evaluate the suitability of a commercially available serum-free human MSC medium for culturing equine adipose-derived MSCs in comparison with human adipose MSCs. Enzyme-free isolation by explant technique and expansion of equine and human cells in the serum-free medium were feasible. However, serum-free culture altered the morphology and complicated handling of equine MSCs, with cell aggregation and spontaneous detachment of multilayers, compared to culture in standard medium supplemented with fetal bovine serum. Furthermore, proliferation and the surface immunophenotype of equine cells were more variable compared to the controls and appeared to depend on the lot of the serum-free medium. Particularly the expression of CD90 was different between experimental groups (P < 0.05), with lower percentages of CD90+ cells found in equine MSC samples cultured in serum-free medium (5.21-83.40%) compared to standard medium (86.20-99.50%). Additionally, small subpopulations expressing MSC exclusion markers such as CD14 (0.28-11.60%), CD34 (0.00-9.87%), CD45 (0.35-10.50%), or MHCII (0.00-3.67%) were found in equine samples after serum-free culture. In contrast, human samples displayed a more consistent morphology and a consistent CD29+ (98.60-99.90%), CD73+ (94.60-98.40%), CD90+ (99.60-99.90%), and CD105+ (97.40-99.80%) immunophenotype after culture in serum-free medium. The obtained data demonstrate that the serum-free medium was suitable for human MSC culture but did not lead to entirely satisfactory results in equine MSCs. This underlines that requirements regarding serum-free culture conditions are species-specific, indicating a need for serum-free media to be optimized for MSCs from relevant animal species. © 2017 International Society for Advancement of Cytometry.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Separação Celular , Meios de Cultura Livres de Soro , Citometria de Fluxo , Cavalos , Humanos , Imunofenotipagem , Receptores de Lipopolissacarídeos/metabolismo , Células-Tronco Mesenquimais/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie , Antígenos Thy-1/metabolismo
6.
Int J Mol Sci ; 19(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154348

RESUMO

Transplantation of multipotent mesenchymal progenitor cells is a valuable option for treating tendon disease. Tenogenic differentiation leading to cell replacement and subsequent matrix modulation may contribute to the regenerative effects of these cells, but it is unclear whether this occurs in the inflammatory environment of acute tendon disease. Equine adipose-derived stromal cells (ASC) were cultured as monolayers or on decellularized tendon scaffolds in static or dynamic conditions, the latter represented by cyclic stretching. The impact of different inflammatory conditions, as represented by supplementation with interleukin-1ß and/or tumor necrosis factor-α or by co-culture with allogeneic peripheral blood leukocytes, on ASC functional properties was investigated. High cytokine concentrations increased ASC proliferation and osteogenic differentiation, but decreased chondrogenic differentiation and ASC viability in scaffold culture, as well as tendon scaffold repopulation, and strongly influenced musculoskeletal gene expression. Effects regarding the latter differed between the monolayer and scaffold cultures. Leukocytes rather decreased ASC proliferation, but had similar effects on viability and musculoskeletal gene expression. This included decreased expression of the tenogenic transcription factor scleraxis by an inflammatory environment throughout culture conditions. The data demonstrate that ASC tenogenic properties are compromised in an inflammatory environment, with relevance to their possible mechanisms of action in acute tendon disease.


Assuntos
Diferenciação Celular , Inflamação/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Adipogenia , Animais , Biomarcadores , Sobrevivência Celular , Células Cultivadas , Microambiente Celular , Condrogênese , Técnicas de Cocultura , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Cavalos , Humanos , Inflamação/etiologia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Tendões , Alicerces Teciduais
7.
BMC Biotechnol ; 17(1): 13, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28193263

RESUMO

BACKGROUND: Decellularization of tendon tissue plays a pivotal role in current tissue engineering approaches for in vitro research as well as for translation of graft-based tendon restoration into clinics. Automation of essential decellularization steps like freeze-thawing is crucial for the development of more standardized decellularization protocols and commercial graft production under good manufacturing practice (GMP) conditions in the future. METHODS: In this study, a liquid nitrogen-based controlled rate freezer was utilized for automation of repeated freeze-thawing for decellularization of equine superficial digital flexor tendons. Additional tendon specimens underwent manually performed freeze-thaw cycles based on an established procedure. Tendon decellularization was completed by using non-ionic detergent treatment (Triton X-100). Effectiveness of decellularization was assessed by residual nuclei count and calculation of DNA content. Cytocompatibility was evaluated by culturing allogeneic adipose tissue-derived mesenchymal stromal cells on the tendon scaffolds. RESULTS: There were no significant differences in decellularization effectiveness between samples decellularized by the automated freeze-thaw procedure and samples that underwent manual freeze-thaw cycles. Further, we inferred no significant differences in the effectiveness of decellularization between two different cooling and heating rates applied in the automated freeze-thaw process. Both the automated protocols and the manually performed protocol resulted in roughly 2% residual nuclei and 13% residual DNA content. Successful cell culture was achieved with samples decellularized by automated freeze-thawing as well as with tendon samples decellularized by manually performed freeze-thaw cycles. CONCLUSIONS: Automated freeze-thaw cycles performed by using a liquid nitrogen-based controlled rate freezer were as effective as previously described manual freeze-thaw procedures for decellularization of equine superficial digital flexor tendons. The automation of this key procedure in decellularization of large tendon samples is an important step towards the processing of large sample quantities under standardized conditions. Furthermore, with a view to the production of commercially available tendon graft-based materials for application in human and veterinary medicine, the automation of key procedural steps is highly required to develop manufacturing processes under GMP conditions.


Assuntos
Separação Celular/instrumentação , Matriz Extracelular/química , Congelamento , Tendões/química , Tendões/citologia , Alicerces Teciduais , Animais , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Cavalos , Transplante de Células-Tronco Mesenquimais/instrumentação , Células-Tronco Mesenquimais/citologia , Projetos Piloto , Robótica/instrumentação , Engenharia Tecidual/instrumentação
8.
Cytometry A ; 85(8): 678-87, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24894974

RESUMO

Horses are an approved large animal model for therapies of the musculoskeletal system. Especially for tendon disease where cell-based therapy is commonly used in equine patients, the translation of achieved results to human medicine would be a great accomplishment. Immunophenotyping of equine mesenchymal stromal cells (MSCs) remains the last obstacle to meet the criteria of the International Society for Cellular Therapy (ISCT) definition of human MSCs. Therefore, the surface antigen expression of CD 29, CD 44, CD 73, CD 90, CD 105, CD 14, CD 34, CD 45, CD 79α, and MHC II in equine MSCs from adipose tissue, bone marrow, umbilical cord blood, umbilical cord tissue, and tendon tissue was analyzed using flow cytometry. Isolated cells from the different sources and donors varied in their expression pattern of MSC-defining antigens. In particular, CD 90 and 105 showed most heterogeneity. However, cells from all samples were robustly positive for CD 29 and CD 44, while being mostly negative for CD 73 and the exclusion markers CD 14, CD 34, CD 45, CD 79α and MHC II. Furthermore, it was evident that enzymes used for cell detachment after in vitro-culture affected the detection of antigen expression. These results emphasize the need of standardization of MSC isolation, culturing, and harvesting techniques. As the equine MSCs did not meet all criteria the ISCT defined for human MSCs, further investigations for a better characterization of the cell type should be conducted.


Assuntos
Cavalos , Imunofenotipagem/métodos , Imunofenotipagem/normas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/imunologia , Animais , Anticorpos/imunologia , Antígenos de Superfície/metabolismo , Biomarcadores/metabolismo , Adesão Celular , Reações Cruzadas , Feminino , Citometria de Fluxo , Humanos , Padrões de Referência
9.
Front Vet Sci ; 11: 1385395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725585

RESUMO

Multipotent mesenchymal stromal cells (MSC) play an increasing role in the treatment of immune-mediated diseases and inflammatory processes. They regulate immune cells via cell-cell contacts and by secreting various anti-inflammatory molecules but are in turn influenced by many factors such as cytokines. For MSC culture, platelet lysate (PL), which contains a variety of cytokines, is a promising alternative to fetal bovine serum (FBS). We aimed to analyze if PL with its cytokines improves MSC immunoregulatory characteristics, with the perspective that PL could be useful for priming the MSC prior to therapeutic application. MSC, activated peripheral blood mononuclear cells (PBMC) and indirect co-cultures of both were cultivated in media supplemented with either PL, FBS, FBS+INF-γ or FBS+IL-10. After incubation, cytokine concentrations were measured in supernatants and control media. MSC were analyzed regarding their expression of immunoregulatory genes and PBMC regarding their proliferation and percentage of FoxP3+ cells. Cytokines, particularly IFN-γ and IL-10, remained at high levels in PL control medium without cells but decreased in cytokine-supplemented control FBS media without cells during incubation. PBMC released IFN-γ and IL-10 in various culture conditions. MSC alone only released IFN-γ and overall, cytokine levels in media were lowest when MSC were cultured alone. Stimulation of MSC either by PBMC or by PL resulted in an altered expression of immunoregulatory genes. In co-culture with PBMC, the MSC gene expression of COX2, TNFAIP6, IDO1, CXCR4 and MHC2 was upregulated and VCAM1 was downregulated. In the presence of PL, COX2, TNFAIP6, VCAM1, CXCR4 and HIF1A were upregulated. Functionally, while no consistent changes were found regarding the percentage of FoxP3+ cells, MSC decreased PBMC proliferation in all media, with the strongest effect in FBS media supplemented with IL-10 or IFN-γ. This study provides further evidence that PL supports MSC functionality, including their immunoregulatory mechanisms. The results justify to investigate functional effects of MSC cultured in PL-supplemented medium on different types of immune cells in more detail.

10.
Sci Rep ; 14(1): 10393, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710741

RESUMO

The transforming growth factor (TGF)-ß3 is a well-known inducer for tenogenic differentiation, signaling via the Smad2/3 pathway. Furthermore, other factors like extracellular matrix or mechanical force can induce tenogenic differentiation and possibly alter the response to TGF-ß3 by signaling via the Rho/ROCK pathway. The aim of this study was to investigate the interplay of Rho/ROCK and TGF-ß3/Smad signaling in tenogenic differentiation, with the Smad2/3 molecule hypothesized as a possible interface. Cultured as monolayers or on collagen I matrices, mesenchymal stromal cells (MSC) were treated with the ROCK inhibitor Y-27632 (10 µM), TGF-ß3 (10 ng/ml) or both combined. Control cells were cultured accordingly, without Y-27632 and/or without TGF-ß3. At different time points, MSC were analyzed by real-time RT-PCR, immunofluorescence, and Western blot. Cultivation of MSC on collagen matrices and ROCK inhibition supported tenogenic differentiation and fostered the effect of TGF-ß3. The phosphorylation of the linker region of Smad2 was reduced by cultivation on collagen matrices, but not by ROCK inhibition. The latter, however, led to increased phosphorylation of the linker region of Smad3. In conclusion, collagen matrices and the Rho/ROCK signaling pathway influence the TGF-ß3/Smad2/3 pathway by regulating different phosphorylation sites of the Smad linker region.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta3 , Quinases Associadas a rho , Quinases Associadas a rho/metabolismo , Fosforilação , Diferenciação Celular/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Crescimento Transformador beta3/metabolismo , Células Cultivadas , Piridinas/farmacologia , Amidas/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
11.
Cytometry A ; 83(1): 103-13, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23081833

RESUMO

Pioneering clinical stem cell research is being performed in the horse, a recipient of cutting edge veterinary medicine as well as a unique animal model, paving the way for human medical applications. Although demonstrable progress has been made on the clinical front, in vitro characterization of equine stem cells is still in comparatively early stages. To translate the promising results of clinical stem cell therapy in the horse, advances must be made in the characterization of equine stem cells. Aiming to improve communication between veterinarians and other natural scientists, this review gives an overview of veterinary "bedside" achievements, focusing on stem cell therapies in equine orthopedics as well as the current state of in vitro characterization of equine multipotent mesenchymal stromal cells (MSCs) and equine embryonic stem cells (ESCs).


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/veterinária , Doenças dos Cavalos/terapia , Cavalos , Medicina Veterinária/tendências , Animais , Terapia Baseada em Transplante de Células e Tecidos/tendências , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Imunofenotipagem , Técnicas In Vitro , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/transplante , Ortopedia/métodos , Ortopedia/veterinária
13.
BMC Vet Res ; 9: 221, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24168625

RESUMO

BACKGROUND: The treatment of tendon lesions with multipotent mesenchymal stromal cells (MSCs) is widely used in equine medicine. Cell sources of MSCs include bone marrow, as well as solid tissues such as adipose tissue. MSCs can be isolated from these solid tissues either by enzymatic digestion or by explant technique. However, the different preparation techniques may potentially influence the properties of the isolated MSCs. Therefore, the aim of this study was to investigate and compare the effects of these two different methods used to isolate MSCs from solid tissues.Equine adipose tissue, tendon and umbilical cord matrix served as solid tissue sources of MSCs with different stiffness and density. Subsequent to tissue harvest, MSCs were isolated either by enzymatic digestion with collagenase or by explant technique. Cell yield, growth, differentiation potential and tendon marker expression were analysed. RESULTS: At first passage, the MSC yield was significantly higher in enzymatically digested tissue samples than in explanted tissue samples, despite a shorter period of time in primary culture. Further analysis of cell proliferation, migration and differentiation revealed no significant differences between MSCs isolated by enzymatic digestion and MSCs isolated by explant technique. Interestingly, analysis of gene expression of tendon markers revealed a significantly higher expression level of scleraxis in MSCs isolated by enzymatic digestion. CONCLUSIONS: Both isolation techniques are feasible methods for successful isolation of MSCs from solid tissues, with no major effects on cellular proliferation, migration or differentiation characteristics. However, higher MSC yields were achieved in a shorter period of time by collagenase digestion, which is advantageous for the therapeutic use of MSCs. Moreover, based on the higher level of expression of scleraxis in MSCs isolated by enzymatic digestion, these cells might be a better choice when attempting tendon regeneration.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Adipogenia/fisiologia , Tecido Adiposo/citologia , Animais , Contagem de Células/veterinária , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Condrogênese/fisiologia , Colagenases , Técnicas Citológicas/métodos , Técnicas Citológicas/veterinária , Expressão Gênica/fisiologia , Cavalos , Osteogênese/fisiologia , Proteólise , Tendões/citologia , Cordão Umbilical/citologia
14.
Front Vet Sci ; 10: 1154987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346276

RESUMO

Mesenchymal stromal cells (MSC) isolated form bone marrow and adipose tissue are the most common cells used for cell therapy of orthopedic diseases. MSC derived from different tissues show differences in terms of their proliferation, differentiation potential and viability in prolonged cell culture. This suggests that there may be subtle differences in intracellular signaling pathways that modulate these cellular characteristics. The Rho/ROCK signaling pathway is essential for many cellular functions. Targeting of this pathway by the ROCK inhibitor Y-27632 has been shown to be beneficial for cell viability and proliferation of different cell types. The aim of this study was to investigate the effects of Rho/ROCK inhibition on equine MSC proliferation using bone marrow-derived MSC (BMSC) and adipose-derived MSC (ASC). Primary ASC and BMSC were stimulated with or without 10 ng/mL TGF-ß3 or 10 µM Y-27632, as well as both in combination. Etoposide at 10 µM was used as a positive control for inhibition of cell proliferation. After 48 h of stimulation, cell morphology, proliferation activity and gene expression of cell senescence markers p53 and p21 were assessed. ASC showed a trend for higher basal proliferation than BMSC, which was sustained following stimulation with TGF-ß3. This included a higher proliferation with TGF-ß3 stimulation compared to Y-27632 stimulation (p < 0.01), but not significantly different to the no treatment control when used in combination. Expression of p21 and p53 was not altered by stimulation with TGF-ß3 and/or Y-27632 in either cell type. In summary, the Rho/ROCK inhibitor Y-27632 had no effect on proliferation activity and did not induce cell senescence in equine ASC and BMSC.

15.
Front Vet Sci ; 10: 1117829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968472

RESUMO

In equine medicine, the use of regenerative therapeutics has gained growing attention, but is still a new and complex field with room for improvement. Platelet lysate (PL) can be used as therapeutic agent but is also a promising supplement for the culture of multipotent mesenchymal stromal cells. To enable a targeted use of PL both in clinic and laboratory, it is crucial to learn more details on its effective ingredients. While so far, mainly growth factor components have been analyzed in platelet-based products such as PL, the current study focuses on the content of cytokines in serum, plasma, platelet concentrate and PL. Blood was harvested from 20 clinically healthy horses and subjected to blood count and chemistry analysis, as well as to further processing to PL. Plasma and platelet concentrate were produced by a buffy-coat-based method and PL was produced from the concentrate by freeze-thawing. Samples from each horse were analyzed regarding interleukin (IL)-1ß, -4, -6 and -10, interferon-γ and tumor necrosis factor-α concentrations using sandwich ELISAs. Cytokine concentrations in serum, plasma, concentrate and PL were similar and correlated significantly. However, there was a large inter-individual variability in cytokine concentrations between the different donor horses. The samples from some donor animals had overall very high cytokine concentrations, while samples from other donors had no measurable cytokine ingredient. This pattern was observed for all cytokines. There was a noticeable link between high cytokine concentrations in the blood products and abnormal findings in blood chemistry. Cytokine concentrations in samples from horses with abnormal findings were significantly higher than in samples from the remaining horses. The interindividual differences in cytokine concentrations could be highly relevant when using PL for therapy and cell culture, as the mode of action of the PL is likely changed depending on the presence of pro- and anti-inflammatory cytokines. Blood chemistry might be useful to predict cytokine concentrations in blood products.

16.
Vet Rec Open ; 10(1): e257, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36846276

RESUMO

Background: Low-field magnetic resonance imaging (MRI) has gained increasing importance to monitor equine tendon lesions. Comparing results between studies and cases is hampered, because image analysis approaches vary strongly. This study aimed to improve reliability, comparability and time efficiency of quantitative MRI image analysis. Methods: Induced tendon lesions were studied over a 24-week period with 10 follow-up MRI examinations. Signal intensities (SIs) of tendons, tendon lesions, cortical bone and background, as well as lesion cross-sectional areas (CSAs) were measured. Lesion SI standardisation with different formulas was evaluated, using histological findings as reference. Different types of region of interest (ROI) for lesion SI measurement were compared. Lesion CSA measurement at different levels was evaluated, using the calculated total lesion volume as reference. Subjective lesion identification and manual CSA and SI measurements were compared to an automated, algorithm-based approach. Results: Lesion SI standardised using a quotient of lesion and background or cortical bone SI, correlated best with histologically determined lesion severity. Lesion SI in circular ROIs correlated strongly with lesion SI in free-hand whole-lesion ROIs. The level of the maximum lesion CSA shifted over time; the CSA maximum correlated strongly with lesion volume. In sequences with short acquisition time, algorithm-based automated lesion detection showed almost perfect agreement with subjective lesion identification. Automated measurement of CSA and SI was also feasible, with stronger correlation and better agreement with the manually obtained data for the SI than for the CSA. Conclusion: Our study may provide guidance for MRI image analysis of tendon healing. Reliable image analysis can be performed time-efficiently, particularly regarding lesion SI quantification.

17.
Cells ; 12(21)2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37947591

RESUMO

The treatment of tendinopathies with multipotent mesenchymal stromal cells (MSCs) is a promising option in equine and human medicine. However, conclusive clinical evidence is lacking. The purpose of this study was to gain insight into clinical treatment efficacy and to identify suitable outcome measures for larger clinical studies. Fifteen horses with early naturally occurring tendon disease were assigned to intralesional treatment with allogeneic adipose-derived MSCs suspended in serum or with serum alone through block randomization (dosage adapted to lesion size). Clinicians and horse owners remained blinded to the treatment during 12 months (seven horses per group) and 18 months (seven MSC-group and five control-group horses) of follow-up including clinical examinations and diagnostic imaging. Clinical inflammation, lameness, and ultrasonography scores improved more over time in the MSC group. The lameness score difference significantly improved in the MSC group compared with the control group after 6 months. In the MSC group, five out of the seven horses were free of re-injuries and back to training until 12 and 18 months. In the control group, three out of the seven horses were free of re-injuries until 12 months. These results suggest that MSCs are effective for the treatment of early-phase tendon disease and provide a basis for a larger controlled study.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Doenças dos Cavalos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Relesões , Humanos , Cavalos , Animais , Projetos Piloto , Coxeadura Animal/terapia , Coxeadura Animal/patologia , Doenças dos Cavalos/terapia , Doenças dos Cavalos/patologia , Transplante de Células-Tronco Mesenquimais/veterinária , Células-Tronco Mesenquimais/patologia , Tendões/patologia
18.
Cell Tissue Res ; 347(3): 677-688, 2012 03.
Artigo em Inglês | MEDLINE | ID: mdl-22287044

RESUMO

Regenerative medicine is one of the most intensively researched medical branches, with enormous progress every year. When it comes to translating research from bench to bedside, many of the pioneering innovations are achieved by cooperating teams of human and veterinary medical scientists. The veterinary profession has an important role to play in this new and evolving technology, holding a great scientific potential, because animals serve widely as models for human medicine and results obtained from animals may serve as preclinical results for human medicine. Regenerative veterinary medicine utilizing mesenchymal stromal cells (MSC) for the treatment of acute injuries as well as chronic disorders is gradually turning into clinical routine. As orthopaedic disorders represent a major part of all cases in veterinary clinical practice, it is not surprising that they are currently taking a leading role in MSC therapies. Therefore, the purpose of this paper is to give an overview on past and current achievements as well as future perspectives in stem cell-based tissue engineering in veterinary orthopaedics.

19.
Front Bioeng Biotechnol ; 10: 855095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35445006

RESUMO

Mesenchymal stromal cells (MSC) represent a promising treatment option for tendon disorders and joint diseases, primarily osteoarthritis. Since MSC are highly context-sensitive to their microenvironment, their therapeutic efficacy is influenced by their tissue-specific pathologically altered targets. These include not only cellular components, such as resident cells and invading immunocompetent cells, but also components of the tissue-characteristic extracellular matrix. Although numerous in vitro models have already shown potential MSC-related mechanisms of action in tendon and joint diseases, only a limited number reflect the disease-specific microenvironment and allow conclusions about well-directed MSC-based therapies for injured tendon and joint-associated tissues. In both injured tissue types, inflammatory processes play a pivotal pathophysiological role. In this context, MSC-mediated macrophage modulation seems to be an important mode of action across these tissues. Additional target cells of MSC applied in tendon and joint disorders include tenocytes, synoviocytes as well as other invading and resident immune cells. It remains of critical importance whether the context-sensitive interplay between MSC and tissue- and disease-specific targets results in an overall promotion or inhibition of the desired therapeutic effects. This review presents the authors' viewpoint on disease-related targets of MSC therapeutically applied in tendon and joint diseases, focusing on the equine patient as valid animal model.

20.
Vet Sci ; 9(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35737349

RESUMO

In equine medicine, experience regarding MRI of chronic tendon lesions is limited, and evidence on the suitability of different sequences in 3 T high-field MRI is scarce. Therefore, macroscopically healthy and altered tendons were examined by histology and in 0.27 T low- and 3 T high-field MRI, focusing on T1-weighted (T1w) sequences to visualize chronic lesions. In high-field MRI, tendons were positioned parallel (horizontal) and perpendicular (vertical) to the magnetic field, acknowledging the possible impact of the magic angle effect. The images were evaluated qualitatively and signal intensities were measured for quantitative analysis. Qualitative evaluation was consistent with the quantitative results, yet there were differences in lesion detection between the sequences. The low-field T1w GRE sequence and high-field T1w FLASH sequence with vertically positioned tendons displayed all tendon lesions. However, the horizontally scanned high-field T1w SE sequence failed to detect chronic tendon lesions. The agreement regarding tendon signal intensities was higher between high-field sequences scanned in the same orientation (horizontal or vertical) than between the same types of sequence (SE or FLASH), demonstrating the impact of tendon positioning. Vertical scanning was superior for diagnosis of the tendon lesions, suggesting that the magic angle effect plays a major role in detecting chronic tendon disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA