Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 912632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935224

RESUMO

Fusarium head blight (FHB) is a devastating disease encountered by spring-grown barley. Traditionally, synthetic chemicals have been used to control this disease on small grain cereals. A move toward biological control agents as part of sustainable agriculture is pertinent due to the evolutionary mechanisms employed by fungal diseases to circumvent current protection strategies. This study evaluated the effect of six lactic acid bacteria isolates on the development of FHB under in vitro and glasshouse conditions. The relative expression of Fusarium marker genes and transcription factors under Fusarium infection was examined. Dual-culture assays observed inhibition zones of up to 10 and 17% of total plate area for L. amylovorus FST 2.11 and L. brevis R2Δ, respectively. Detached leaf assays validated the antifungal activity and showed the potential of all test isolates to significantly inhibit sporulation of Fusarium culmorum and Fusarium graminearum strains. Spray inoculation of lactic acid bacteria to barley spikelets prior to Fusarium spore application significantly reduced disease severity for five candidates (P < 0.05) under glasshouse conditions. Mycotoxin analysis revealed the ability of L. amylovorus DSM20552 to significantly reduce deoxynivalenol content in spikelets (P < 0.05). A preliminary gene expression study showed the positive influence of lactic acid bacteria on the expression of important defense-related marker genes and transcription factors upon FHB. These results indicate the potential of lactic acid bacteria to be included as part of an integrated pest management strategy for the management of FHB disease. This strategy will reduce FHB severity and deoxynivalenol (DON) contamination of spring barley, leading to high acceptance in the grain market.

2.
Front Plant Sci ; 13: 1039090, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340419

RESUMO

Wheat is one of the main staple food crops, and 775 million tonnes of wheat were produced worldwide in 2022. Fungal diseases such as Fusarium head blight, Septoria tritici blotch, spot blotch, tan spot, stripe rust, leaf rust, and powdery mildew cause serious yield losses in wheat and can impact quality. We aimed to investigate the incidence of spores from major fungal pathogens of cereals in the field by comparing microscopic and metagenomic based approaches for spore identification. Spore traps were set up in four geographically distinct UK wheat fields (Carnoustie, Angus; Bishop Burton, Yorkshire; Swindon, Wiltshire; and Lenham, Kent). Six major cereal fungal pathogen genera (Alternaria spp., Blumeria graminis, Cladosporium spp., Fusarium spp., Puccinia spp., and Zymoseptoria spp.) were found using these techniques at all sites. Using metagenomic and BLAST analysis, 150 cereal pathogen species (33 different genera) were recorded on the spore trap tapes. The metagenomic BLAST analysis showed a higher accuracy in terms of species-specific identification than the taxonomic tool software Kraken2 or microscopic analysis. Microscopic data from the spore traps was subsequently correlated with weather data to examine the conditions which promote ascospore release of Fusarium spp. and Zymoseptoria spp. This revealed that Zymoseptoria spp. and Fusarium spp. ascospore release show a positive correlation with relative humidity (%RH). Whereas air temperature (°C) negatively affects Zymoseptoria spp. ascospore release.

3.
Front Genet ; 11: 469, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477410

RESUMO

During plant-pathogen interactions, pathogens secrete many rapidly evolving, small secreted proteins (SSPs) that can modify plant defense and permit pathogens to colonize plant tissue. The fungal pathogen Zymoseptoria tritici is the causal agent of Septoria tritici blotch (STB), one of the most important foliar diseases of wheat, globally. Z. tritici is a strictly apoplastic pathogen that can secrete numerous proteins into the apoplast of wheat leaves to promote infection. We sought to determine if, during STB infection, wheat also secretes small proteins into the apoplast to mediate the recognition of pathogen proteins and/or induce defense responses. To explore this, we developed an SSP-discovery pipeline to identify small, secreted proteins from wheat genomic data. Using this pipeline, we identified 6,998 SSPs, representing 2.3% of all proteins encoded by the wheat genome. We then mined a microarray dataset, detailing a resistant and susceptible host response to STB, and identified 141 Z. tritici- responsive SSPs, representing 4.7% of all proteins encoded by Z. tritici - responsive genes. We demonstrate that a subset of these SSPs have a functional signal peptide and can interact with Z. tritici SSPs. Transiently silencing two of these wheat SSPs using virus-induced gene silencing (VIGS) shows an increase in susceptibility to STB, confirming their role in defense against Z. tritici.

4.
Microbiologyopen ; 2(5): 717-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23894099

RESUMO

Mineral phosphate solubilization (MPS) microorganisms are important for their provision of orthophosphate anions for plant growth promotion activity in soil. In this study, we applied a functional metagenomic approach to identify this trait directly from the microbiome in barley rhizosphere soil that had not received P fertilizer over a 15-year period. A fosmid system was used to clone the metagenome of which 18,000 clones (~666 Mb of DNA) was screened for MPS. Functional assays and High Performance Liquid Chromatography analysis recognized gluconic acid production and MPS activity in the range 24.8-77.1 mmol/L and 27.6-38.16 µg/mL, respectively, when screened in an Escherichia coli host (at frequency of one MPS-positive clone hit per 114 Mb DNA tested). The MPS clones (with average insert size of ~37 kb) were analysed by 454 Roche sequencing and annotated. A number of genes/operons with homology to Phosphorous (P) uptake, regulatory and solubilization mechanisms were identified, linking the MPS function to the uncultivated microbiome present in barley rhizosphere soil.


Assuntos
DNA Bacteriano/genética , Hordeum/microbiologia , Metagenoma , Fosfatos/metabolismo , Rizosfera , Microbiologia do Solo , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , DNA Bacteriano/classificação , DNA Bacteriano/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Gluconatos/metabolismo , Hordeum/metabolismo , Anotação de Sequência Molecular , Óperon , Filogenia , Análise de Sequência de DNA , Solo/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA