Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 122(8): 2221-2231, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385345

RESUMO

The organic ligand 6,6'-dihydroxy-2,2'-bipyridine (6,6'-dhbp) is frequently used to bind transition metals in order to form catalysts for many organic and inorganic transformations. 6,6'-dhbp exists in two tautomeric forms, the pyridinol tautomer and the amide (lactam) tautomer with each tautomer having two rotational conformers: cis or trans. Only the cis-pyridinol tautomer has the proper configuration to bind transition metals. The pendant OH (or O- groups when deprotonated) in 6,6'-dhbp typically do not bind the metal when forming the metal catalyst but can facilitate the proton transfer steps in the catalysis process. Electronic structure calculations were used to predict the stability of all possible isomers (including conformers and protonation states) in the gas phase and aqueous solution. These results have been compared to experimental data including UV-vis and NMR spectra as a function of pH. The pKa values for the 6,6'-dhbp ligand in the -2 to +2 structures were predicted, and these ligands show different behavior in the gas phase versus in aqueous solution.

2.
Inorganica Chim Acta ; 466: 442-450, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29217867

RESUMO

We report the synthesis and characterization of new ruthenium(II) and iridium(III) complexes of a new bidentate chelate, NHCR'-pyOR (OR = OMe, OtBu, OH and R' = Me, Et). Synthesis and characterization studies were done on the following compounds: four ligand precursors (1-4); two silver complexes of these NHCR'-pyOR ligands (5-7); six ruthenium complexes of the type [η6-(p-cymene)Ru(NHCR'-pyOR)Cl]X with R' = Me, Et and R = Me, tBu, H and X = OTf-, PF6- and PO2F2- (8-13); and two iridium complexes, [Cp*Ir(NHCMe-pyOtBu)Cl]PF6 (14) and [Cp*Ir(NHCMe-pyOH)Cl]PO2F2 (15). The complexes are air stable and were isolated in moderate yield. However, for the PF6- salts, hydrolysis of the PF6- counter anion to PO2F2- during t-butyl ether deprotection was observed. Most of the complexes were characterized by 1H and 13C-NMR, MS, IR, and X-ray diffraction. The ruthenium complexes [η6-(p-cymene)Ru(NHCMe-pyOR)Cl]OTf (R = Me (8) and tBu (9)) were tested for their ability to accelerate CO2 hydrogenation and formic acid dehydrogenation. However, our studies show that the complexes transform during the reaction and these complexes are best thought of as pre-catalysts.

3.
Inorg Chem ; 53(24): 12689-98, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25427106

RESUMO

Water oxidation can lead to a sustainable source of energy, but for water oxidation catalysts to be economical they must use earth abundant metals. We report here 2:1 6,6'-dihydroxybipyridine (6,6'-dhbp)/copper complexes that are capable of electrocatalytic water oxidation in aqueous base (pH = 10-14). Two crystal structures of the complex that contains 6,6'-dhbp and copper(II) in a ratio of 2:1 (complex 1) are presented at different protonation states. The thermodynamic acid dissociation constants were measured for complex 1, and these show that the complex is fully deprotonated above pH = 8.3 (i.e., under water oxidation conditions). CW-EPR, ENDOR, and HYSCORE spectroscopy confirmed that the 6,6'-dhbp ligand is bound to the copper ion over a wide pH range which shows how pH influences precatalyst structure. Additional copper(II) complexes were synthesized from the ligands 4,4'-dhbp (complex 2) and 6,6'-dimethoxybipyridine (complexes 3 and 4). A zinc complex of 6,6'-dhbp was also synthesized (complex 5). Crystal structures are reported for 1 (in two protonation states), 3, 4, and 5. Water oxidation studies using several of the above compounds (1, 2, 4, and 5) at pH = 12.6 have illustrated that both copper and proximal OH groups are necessary for water oxidation at a low overpotential. Our most active catalyst 1 was found to have an overpotential of 477 mV for water oxidation at a moderate rate of kcat = 0.356 s(-1) with a competing irreversible oxidation event at a rate of 1.082 s(-1). Furthermore, our combined work supports previous observations in which OH/O(-) groups on the bipyridine rings can hydrogen bond with metal bound substrate, support unusual binding modes, and potentially facilitate proton coupled electron transfer.


Assuntos
2,2'-Dipiridil/química , Complexos de Coordenação/química , Cobre/química , Água/química , Catálise , Técnicas Eletroquímicas , Modelos Moleculares , Oxirredução
4.
Chem Commun (Camb) ; 54(31): 3819-3822, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29560991

RESUMO

The first example of a CNC pincer ligand with a central pyridinol ligand is reported in a nickel(ii) complex. This metal complex can be protonated or deprotonated reversibly in situ to switch on or off the photocatalytic performance towards CO2 reduction. The O- substituent appears essential for catalysis.

5.
Organometallics ; 36(6): 1091-1106, 2017 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29540958

RESUMO

Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO2 hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6'-dihydroxybipyridine (6,6'-dhbp)) for both their proton-responsive features and for metal-ligand bifunctional catalysis. We aimed to compare bidentate pyridin-2-ol based ligands with a new scaffold featuring an N-heterocyclic carbene (NHC) bound to pyridin-2-ol. Toward this aim, we have synthesized a series of [Cp*Ir(NHC-pyOR)Cl]OTf complexes where R = t Bu (1), H (2), or Me (3). For comparison, we tested analogous bipy-derived iridium complexes as catalysts, specifically [Cp*Ir(6,6'-dxbp)Cl]OTf, where x = hydroxy (4Ir ) or methoxy (5Ir ); 4Ir was reported previously, but 5Ir is new. The analogous ruthenium complexes were also tested using [(η6-cymene)Ru(6,6'-dxbp)Cl]OTf, where x = hydroxy (4Ru ) or methoxy (5Ru ); 4Ru and 5Ru were both reported previously. All new complexes were fully characterized by spectroscopic and analytical methods and by single-crystal X-ray diffraction for 1, 2, 3, 5Ir , and for two [Ag(NHC-pyOR)2]OTf complexes 6 (R = t Bu) and 7 (R = Me). The aqueous catalytic studies of both CO2 hydrogenation and formic acid dehydrogenation were performed with catalysts 1-5. In general, NHC-pyOR complexes 1-3 were modest precatalysts for both reactions. NHC complexes 1-3 all underwent transformations under basic CO2 hydrogenation conditions, and for 3, we trapped a product of its transformation, 3SP , which we characterized crystallographically. For CO2 hydrogenation with base and dxbp-based catalysts, we observed that x = hydroxy (4Ir ) is 5-8 times more active than x = methoxy (5Ir ). Notably, ruthenium complex 4Ru showed 95% of the activity of 4Ir . For formic acid dehydrogenation, the trends were quite different with catalytic activity showing 4Ir ≫ 4Ru and 4Ir ≈ 5Ir . Secondary coordination sphere effects are important under basic hydrogenation conditions where the OH groups of 6,6'-dhbp are deprotonated and alkali metals can bind and help to activate CO2. Computational DFT studies have confirmed these trends and have been used to study the mechanisms of both CO2 hydrogenation and formic acid dehydrogenation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA