Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(2): 686-692, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27997166

RESUMO

Charge transfer/transport in molecular wires over varying distances is a subject of great interest. The feasible transport mechanisms have been generally accounted for on the basis of tunneling or superexchange charge transfer operating over small distances which progressively gives way to hopping transport over larger distances. The underlying molecular sequential steps that likely take place during hopping and the operative mechanism occurring at intermediate distances have received much less attention given the difficulty in assessing detailed molecular-level information. We describe here the operating mechanisms for unimolecular electron transfer/transport in the ground state of radical-anion mixed-valence derivatives occurring between their terminal perchlorotriphenylmethyl/ide groups through thiophene-vinylene oligomers that act as conjugated wires of increasing length up to 53 Å. The unique finding here is that the net transport of the electron in the larger molecular wires is initiated by an electron-hole dissociation intermediated by hole delocalization (conformationally assisted and thermally dependent) forming transient mobile polaronic states in the bridge that terminate by an electron-hole recombination at the other wire extreme. On the contrary, for the shorter radical-anions our results suggest that a flickering resonance mechanism which is intermediate between hopping and superexchange is the operative one. We support these mechanistic interpretations by applying the pertinent biased kinetic models of the charge/spin exchange rates determined by electron paramagnetic resonance and by molecular structural level information obtained from UV-vis and Raman spectroscopies and by quantum chemical modeling.

2.
Chemistry ; 23(31): 7595-7606, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28382693

RESUMO

Radical cations and dications of π-conjugated systems play vital roles in organic electronic devices, organic conductors, and conducting polymers. Their structures, charge and spin distribution, and mechanism of charge transport are of great interest. In this article, radical cations and dications of a series of newly synthesized methylthio-capped rylenes were synthesized and isolated. Their ground-state structures, physical properties, and solid-state packing were systematically investigated by various experimental methods, such as X-ray crystallographic analysis, UV/Vis/NIR absorption spectroscopy, (spectro-)electrochemistry, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, superconducting quantum interference device, and Raman spectroscopy, assisted by DFT calculations. It was found that all the charged species show an exceptional stability under ambient air and light conditions due to the efficient spin and charge delocalization over the whole rylene backbone. The dication of hexarylene turned out to have an unusual open-shell singlet rather than closed-shell ground state, thus it can be described as a diradical dication. Dimerization was observed for the radical cations and even the dications in crystals due to the strong intermolecular antiferromagnetic spin-spin interaction and π-π interaction, which result in unique magnetic properties. Such intermolecular association was also observed in solution.

3.
Angew Chem Int Ed Engl ; 56(9): 2250-2259, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-27862823

RESUMO

The vibrational Raman spectra of several series of aromatic and quinoidal compounds have been analyzed considering the downshifts and upshifts of the frequencies of the relevant Raman bands as a function of the number of repeating units. Oligothiophenes, oligophenylene-vinylenes, and oligoperylenes (oligophenyls) derivatives are studied in a common context. These shifts are taken as spectroscopic fingerprints of the changes in π-conjugation. For a given family, aromatic and quinoidal oligomers have been studied together, and according to their Raman frequency shifts located in the two-well BLA-energy curve of their ground electronic state as a function of the bond-length-alternation pattern (BLA). The connection among BLA values, π-conjugation, and Raman frequencies is taken here as the basis of the study. These Raman shifts/BLA changes have been related to important electronic properties of these one-dimensional linear π-electron delocalized systems such as quinoidal (polyene) and aromatic characters.

4.
Angew Chem Int Ed Engl ; 56(11): 2898-2902, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28140501

RESUMO

Carbon-bridged bis(aminoaryl) oligo(para-phenylenevinylene)s have been prepared and their optical, electrochemical, and structural properties analyzed. Their radical cations are class III and class II mixed-valence systems, depending on the molecular size, and they show electronic couplings which are among the largest for the self-exchange reaction of purely organic molecules. In their dication states, the antiferromagnetic coupling is progressively tuned with size from quinoidal closed-shell to open-shell biradicals. The data prove that the electronic coupling in the radical cations and the singlet-triplet gap in the dications show similar small attenuation factors, thus allowing charge/spin transfer over rather large distances.

5.
J Am Chem Soc ; 138(24): 7782-90, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27248181

RESUMO

While the chemistry of open-shell singlet diradicaloids has been successfully developed in recent years, the synthesis of π-conjugated systems with poly-radical characters (i.e., beyond diradical) in the singlet ground state has been mostly unsuccessful. In this study, we report the synthesis and isolation of two fully fused macrocycles containing four (4MC) and six (6MC) alternatingly arranged quinoidal/aromatic carbazole units. Ab initio electronic structure calculations and various experimental measurements indicate that both 4MC and 6MC have an open-shell singlet ground state with moderate tetraradical and hexaradical characters, respectively. Both compounds can be thermally populated to high-spin excited states, resulting in weak magnetization at room temperature. Our study represents the first demonstration of singlet π-conjugated molecules with poly-radical characters and also gives some insights into molecular magnetism in neutral π-conjugated polycyclic heteroarenes.

6.
J Am Chem Soc ; 137(11): 3834-43, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25730496

RESUMO

We have used Raman spectroscopy to study the molecular and electronic structures of the radical cations and dications of carbon-bridged oligo(para-phenylenevinylene)s (COPVn, n = 1-6) possessing consecutive fused pentagons and hexagons, up to 19, along with COPV derivatives having electron-donating and -withdrawing groups. This study was made possible by the outstanding stability of the charged states of COPVs. We could untangle the effects of π-conjugation in the planar structure on the Raman frequency by distinguishing it from other structural effects, such as strain in the vinylene groups shared by the two pentagons. The analyses showed that the radical cations have benzo-quinoidal structures confined in the center of the molecule, as well as benzo-aromatic rings at the terminal sites. In contrast, dications of COPVn longer than n = 3 exhibit a biradicaloid character because of the recovery of aromaticity in the central rings and quinoidal rings at the terminal positions. These biradicaloids favor a singlet nature in their ground electronic states because of the double spin polarization. The introduction of electron-donating and -withdrawing groups on the termini of a COPV core affords, upon oxidation or reduction, a fully delocalized class III mixed valence system because of the high degree of conjugation of the COPV platform, which favors extensive charge delocalization.

7.
J Am Chem Soc ; 137(26): 8572-83, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26062868

RESUMO

Research on stable open-shell singlet diradicaloids recently became a hot topic because of their unique optical, electronic, and magnetic properties and promising applications in materials science. So far, most reported singlet diradicaloid molecules have a symmetric structure, while asymmetric diradicaloids with an additional contribution of a dipolar zwitterionic form to the ground state were rarely studied. In this Article, a series of new push-pull type oligo(N-annulated perylene)quinodimethanes were synthesized. Their chain length and solvent-dependent ground states and physical properties were systematically investigated by various experimental methods such as steady-state and transient absorption, two-photon absorption, X-ray crystallographic analysis, electron spin resonance, superconducting quantum interference device, Raman spectroscopy, and electrochemistry. It was found that with extension of the chain length, the diradical character increases while the contribution of the zwitterionic form to the ground state becomes smaller. Because of the intramolecular charge transfer character, the physical properties of this push-pull system showed solvent dependence. In addition, density functional theory calculations on the diradical character and Hirshfeld charge were conducted to understand the chain length and solvent dependence of both symmetric and asymmetric systems. Our studies provided a comprehensive understanding on the fundamental structure- and environment-property relationships in the new asymmetric diradicaloid systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA