Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(23): 15132-15141, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200922

RESUMO

Plastics are contaminants of emerging concern that can enter the environment from multiple sources, including via land application of treated sewage sludge (biosolids). Biosolids samples collected from 82 wastewater treatment plants (WWTPs) across Australia and covering 34% of the population during census week in 2016 were quantitatively analyzed to estimate the release of seven common plastics. Quantitative analysis was performed by pressurized liquid extraction followed by double-shot microfurnace pyrolysis coupled to gas chromatography mass spectrometry. Ninety nine percent of the samples contained plastics (Σ6plastics) at concentrations of between 0.4 and 23.5 mg/g dry weight (median; 10.4 mg/g dry weight), while polycarbonate was not detected in any sample. Per-capita mass loads of plastics (Σ6plastics) released were between 8 and 877 g/person/year across all investigated WWTPs. Polyethylene was the predominant plastic detected, contributing to 69% of Σ6plastics. Based on the concentrations measured, it was projected that around 4700 metric tons (Mt) of plastics are released into the Australian environment through biosolids end-use each year, equating to approximately 200 g/person/year, which represents 0.13% of total plastics use in Australia. Of this, 3700 Mt of plastics are released to agricultural lands and 140 Mt to landscape topsoil. Our results provide a first quantitative per-capita mass loads and emission estimate of plastic types through biosolids end-use.


Assuntos
Plásticos , Poluentes Químicos da Água , Austrália , Biossólidos , Humanos , Esgotos , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 874: 162193, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36828069

RESUMO

Literature regarding microplastics in the atmosphere has advanced in recent years. However, studies have been undertaken in isolation with minimal collaboration and exploration of the relationships between air, deposition and dust. This review collates concentrations (particle count and mass-based), shape, size and polymetric characteristics for microplastics in ambient air (m3), deposition (m2/day), dust (microplastics/g) and snow (microplastics/L) from 124 peer-reviewed articles to provide a holistic overview and analysis of our current knowledge. In summary, ambient air featured concentrations between <1 to >1000 microplastics/m3 (outdoor) and <1 microplastic/m3 to 1583 ± 1181 (mean) microplastics/m3 (indoor), consisting of polyethylene terephthalate, polyethylene, polypropylene. No difference (p > 0.05) was observed between indoor and outdoor concentrations or the minimum size of microplastics (p > 0.5). Maximum microplastic sizes were larger indoors (p < 0.05). Deposition concentrations ranged between 0.5 and 1357 microplastics/m2/day (outdoor) and 475 to 19,600 microplastics/m2/day (indoor), including polyethylene, polystyrene, polypropylene, polyethylene terephthalate. Concentrations varied between indoor and outdoor deposition (p < 0.05), being more abundant indoors, potentially closer to sources/sinks. No difference was observed between the minimum or maximum reported microplastic sizes within indoor and outdoor deposition (p > 0.05). Road dust concentrations varied between 2 ± 2 and 477 microplastics/g (mean), consisting of polyvinyl chloride, polyethylene, polypropylene. Mean outdoor dust concentrations ranged from <1 microplastic/g (remote desert) to between 18 and 225 microplastics/g, comprised of polyethylene terephthalate, polyamide, polypropylene. Snow concentrations varied between 0.1 and 30,000 microplastics/L, containing polyethylene, polyamide, polypropylene. Concentrations within indoor dust varied between 10 and 67,000 microplastics/g, including polyethylene terephthalate, polyethylene, polypropylene. No difference was observed between indoor and outdoor concentrations (microplastics/g) or maximum size (p > 0.05). The minimum size of microplastics were smaller within outdoor dust (p > 0.05). Although comparability is hindered by differing sampling methods, analytical techniques, polymers investigated, spectral libraries and inconsistent terminology, this review provides a synopsis of knowledge to date regarding atmospheric microplastics.

3.
Sci Total Environ ; 811: 152382, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34923004

RESUMO

This study investigated the occurrence and contribution of plastic particles associated with size fractionated biosolids to the total concentration in biosolids (treated sewage sludge) samples collected from 20 wastewater treatment plants (WWTP) across Australia. This was achieved through sequential size fractionation of biosolids samples to quantify the mass concentration of 7 common plastics across a range of biosolids size fractions, including below 25 µm which has not been assessed in many previous studies. Quantitative analysis was performed by pressurized liquid extraction followed by pyrolysis coupled to gas chromatography - mass spectrometry. Of the total quantified plastics (Σ7plastics), the greatest proportion (27%) of the total mass were identified in the nominal <25 µm sized biosolids fraction. Polyethylene dominated the polymer mass in every size fraction, even though profiles varied between WWTPs. When comparing the sum of all sites for each sized biosolids fraction, the plurality of the polyethylene, polyvinyl-chloride, polystyrene, polypropylene, polycarbonate, and polyethylene-terephthalate concentrations were associated with the smallest size fraction (<25 µm). We confirm for the first time the presence of plastic particles in biosolids below a size fraction that is not captured by many methods. This is important, because of the potential greater significance of plastics in the low sizes to environmental and human health.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Biossólidos , Humanos , Plásticos , Pirólise , Esgotos , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 796: 148835, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34280630

RESUMO

The influence of photo-oxidation on the quantification of isotactic polypropylene by Pyrolysis Gas Chromatography/Mass Spectrometry (Pyr-GC/MS) was assessed. Beads (oval shape, ~5 mm) and fragments (irregular shaped, 250-50 µm and 500-1000 µm) were subjected to relatively harsh simulated accelerated weathering conditions (using a filtered xenon-arc reproducing sunlight's full spectrum) for up to 37 and 80 days, respectively. Samples collected (n = 10 replicates for each treatment) at increasing number of weathering days were analysed by Fourier-transform infrared spectroscopy with Attenuated Total Reflection (FTIR-ATR), scanning electron microscopy, and differential scanning calorimetry in order to assess the extent and the rate of degradation. The rate of surface oxidation occurred faster for fragments compared to beads, probably due to their higher surface area. Quantification of the polypropylene trimer (2,4-dimethyl-1-heptene) via double shot Pyr-GC/MS, showed that the signal of the trimer relative to the mass of polypropylene was reduced through weathering with a degradation rate of 1:3 faster for fragments over beads. Signal reduction and carbonyl index were correlated to show that polypropylene with a carbonyl index of ≥13 has a significantly reduced 2,4-dimethyl-1-heptene signal when compared to virgin material. Consequently, the quantification of polypropylene subjected to weathering under harsh conditions may be underestimated by 42% (fragments, carbonyl index: 18) to 49% (beads, carbonyl index: 30) when quantified by Pyr-GC/MS and using virgin polypropylene calibration standards. Pyrolysis at a lower temperature (350 °C) identified six degradation specific markers (oxidation products) that increased in concentration with weathering. Further comparisons between virgin and weathered microplastics may need to be considered to avoid underestimation of microplastic concentrations in future studies.


Assuntos
Microplásticos , Plásticos , Cromatografia Gasosa-Espectrometria de Massas , Polipropilenos , Pirólise
5.
J Hazard Mater ; 416: 125811, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33892382

RESUMO

Microplastics (1 - 5000 µm) are pervasive in every compartment of our environment. However, little is understood regarding the concentration and size distribution of microplastics in road dust, and how they change in relation to human activity. Within road dust, microplastics move through the environment via atmospheric transportation and stormwater run-off into waterways. Human exposure pathways to road dust include dermal contact, inhalation and ingestion. In this study, road dust along an urban to rural transect within South-East Queensland, Australia was analysed using Accelerated Solvent Extraction followed by pyrolysis Gas Chromatography-Mass Spectrometry (Pyr-GC/MS). Polypropylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, poly (methyl methacrylate) and polyethylene were quantified. Microplastic concentrations ranged from ~0.5 mg/g (rural site) to 6 mg/g (Brisbane city), consisting primarily of polyvinyl chloride (29%) and polyethylene terephthalate (29%). Size fractionation (< 250 µm, 250-500 µm, 500-1000 µm, 1000-2000 µm and 2000-5000 µm) established that the < 250 µm size fraction contained the majority of microplastics by mass (mg/g). Microplastic concentrations in road dust demonstrated a significant relationship with the volume of vehicles (r2 = 0.63), suggesting traffic, as a proxy for human movement, is associated with increased microplastic concentrations in the built environment.


Assuntos
Poeira , Microplásticos , Austrália , Cidades , Poeira/análise , Monitoramento Ambiental , Humanos , Plásticos
6.
Environ Sci Process Impacts ; 23(2): 240-274, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33514987

RESUMO

Increased production and use of plastics has resulted in growth in the amount of plastic debris accumulating in the environment, potentially fragmenting into smaller pieces. Fragments <5 mm are typically defined as microplastics, while fragments <0.1 µm are defined as nanoplastics. Over the past decade, an increasing number of studies have reported the occurrence and potential hazards of plastic particles in the aquatic environment. However, less is understood about plastic particles in the terrestrial environment and specifically how much plastic accumulates in soils, the possible sources, potential ecological impacts, interaction of plastic particles with the soil environment, and appropriate extraction and analytical techniques for assessing the above. In this review, a comprehensive overview and a critical perspective on the current state of knowledge on plastic pollution in the soil environment is provided: detailing known sources, occurrence and distribution, analytical techniques used for identification and quantification and the ecological impacts of particles on soil. In addition, knowledge gaps are identified along with suggestions for future research.


Assuntos
Plásticos , Solo , Monitoramento Ambiental , Poluição Ambiental , Microplásticos
7.
Water Res ; 201: 117367, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34182349

RESUMO

Plastics are ubiquitous contaminants that leak into the environment from multiple pathways including the use of treated sewage sludge (biosolids). Seven common plastics (polymers) were quantified in the solid fraction of archived biosolids samples from Australia and the United Kingdom from between 1950 and 2016. Six plastics were detected, with increasing concentrations observed over time for each plastic. Biosolids plastic concentrations correlated with plastic production estimates, implying a potential link between plastics production, consumption and leakage into the environment. Prior to the 1990s, the leakage of plastics into biosolids was limited except for polystyrene. Increased leakage was observed from the 1990s onwards; potentially driven by increased consumption of polyethylene, polyethylene terephthalate and polyvinyl chloride. We show that looking back in time along specific plastic pollution pathways may help unravel the potential sources of plastics leakage into the environment and provide quantitative evidence to support the development of source control interventions or regulations.


Assuntos
Plásticos , Esgotos , Austrália , Biossólidos , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA