Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nucleic Acids Res ; 51(16): 8402-8412, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526274

RESUMO

Genomic islands (GIs) play a crucial role in the spread of antibiotic resistance, virulence factors and antiviral defense systems in a broad range of bacterial species. However, the characterization and classification of GIs are challenging due to their relatively small size and considerable genetic diversity. Predicting their intercellular mobility is of utmost importance in the context of the emerging crisis of multidrug resistance. Here, we propose a large-scale classification method to categorize GIs according to their mobility profile and, subsequently, analyze their gene cargo. We based our classification decision scheme on a collection of mobility protein motif definitions available in publicly accessible databases. Our results show that the size distribution of GI classes correlates with their respective structure and complexity. Self-transmissible GIs are usually the largest, except in Bacillota and Actinomycetota, accumulate antibiotic and phage resistance genes, and favour the use of a tyrosine recombinase to insert into a host's replicon. Non-mobilizable GIs tend to use a DDE transposase instead. Finally, although tRNA genes are more frequently targeted as insertion sites by GIs encoding a tyrosine recombinase, most GIs insert in a protein-encoding gene. This study is a stepping stone toward a better characterization of mobile GIs in bacterial genomes and their mechanism of mobility.


Assuntos
Bactérias , Farmacorresistência Bacteriana , Ilhas Genômicas , Bactérias/efeitos dos fármacos , Bactérias/genética , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Recombinases/genética , Tirosina/genética
2.
PLoS Genet ; 17(8): e1009669, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34415925

RESUMO

Salmonella Genomic Island 1 (SGI1) and its variants are significant contributors to the spread of antibiotic resistance among Gammaproteobacteria. All known SGI1 variants integrate at the 3' end of trmE, a gene coding for a tRNA modification enzyme. SGI1 variants are mobilized specifically by conjugative plasmids of the incompatibility groups A and C (IncA and IncC). Using a comparative genomics approach based on genes conserved among members of the SGI1 group, we identified diverse integrative elements distantly related to SGI1 in several species of Vibrio, Aeromonas, Salmonella, Pokkaliibacter, and Escherichia. Unlike SGI1, these elements target two alternative chromosomal loci, the 5' end of dusA and the 3' end of yicC. Although they share many features with SGI1, they lack antibiotic resistance genes and carry alternative integration/excision modules. Functional characterization of IMEVchUSA3, a dusA-specific integrative element, revealed promoters that respond to AcaCD, the master activator of IncC plasmid transfer genes. Quantitative PCR and mating assays confirmed that IMEVchUSA3 excises from the chromosome and is mobilized by an IncC helper plasmid from Vibrio cholerae to Escherichia coli. IMEVchUSA3 encodes the AcaC homolog SgaC that associates with AcaD to form a hybrid activator complex AcaD/SgaC essential for its excision and mobilization. We identified the dusA-specific recombination directionality factor RdfN required for the integrase-mediated excision of dusA-specific elements from the chromosome. Like xis in SGI1, rdfN is under the control of an AcaCD-responsive promoter. Although the integration of IMEVchUSA3 disrupts dusA, it provides a new promoter sequence and restores the reading frame of dusA for proper expression of the tRNA-dihydrouridine synthase A. Phylogenetic analysis of the conserved proteins encoded by SGI1-like elements targeting dusA, yicC, and trmE gives a fresh perspective on the possible origin of SGI1 and its variants.


Assuntos
Ilhas Genômicas , Plasmídeos/genética , Salmonella/genética , Vibrio/genética , Sequência de Aminoácidos , Conjugação Genética , Sequência Conservada , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Evolução Molecular , Genômica , Filogenia
3.
Nucleic Acids Res ; 49(14): 7807-7824, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33834206

RESUMO

IncC conjugative plasmids and the multiple variants of Salmonella Genomic Island 1 (SGI1) are two functionally interacting families of mobile genetic elements commonly associated with multidrug resistance in the Gammaproteobacteria. SGI1 and its siblings are specifically mobilised in trans by IncC conjugative plasmids. Conjugative transfer of IncC plasmids is activated by the plasmid-encoded master activator AcaCD. SGI1 carries five AcaCD-responsive promoters that drive the expression of genes involved in its excision, replication, and mobilisation. SGI1 encodes an AcaCD homologue, the transcriptional activator complex SgaCD (also known as FlhDCSGI1) that seems to recognise and activate the same SGI1 promoters. Here, we investigated the relevance of SgaCD in SGI1's lifecycle. Mating assays revealed the requirement for SgaCD and its IncC-encoded counterpart AcaCD in the mobilisation of SGI1. An integrative approach combining ChIP-exo, Cappable-seq, and RNA-seq confirmed that SgaCD activates each of the 18 AcaCD-responsive promoters driving the expression of the plasmid transfer functions. A comprehensive analysis of the activity of the complete set of AcaCD-responsive promoters of SGI1 and the helper IncC plasmid was performed through reporter assays. qPCR and flow cytometry assays revealed that SgaCD is essential to elicit the excision and replication of SGI1 and destabilise the helper IncC plasmid.


Assuntos
Conjugação Genética/genética , Ilhas Genômicas/genética , Plasmídeos/genética , Salmonella/genética , Ativação Transcricional , Proteínas de Bactérias/genética , Replicação do DNA/genética , Farmacorresistência Bacteriana Múltipla/genética , Gammaproteobacteria/genética , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Modelos Genéticos , Regiões Promotoras Genéticas/genética , RNA-Seq/métodos
4.
Nucleic Acids Res ; 49(7): 3981-3996, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33721023

RESUMO

The plasmid-encoded colistin resistance gene mcr-1 challenges the use of polymyxins and poses a threat to public health. Although IncI2-type plasmids are the most common vector for spreading the mcr-1 gene, the mechanisms by which these plasmids adapt to host bacteria and maintain resistance genes remain unclear. Herein, we investigated the regulatory mechanism for controlling the fitness cost of an IncI2 plasmid carrying mcr-1. A putative ProQ/FinO family protein encoded by the IncI2 plasmid, designated as PcnR (plasmid copy number repressor), balances the mcr-1 expression and bacteria fitness by repressing the plasmid copy number. It binds to the first stem-loop structure of the repR mRNA to repress RepA expression, which differs from any other previously reported plasmid replication control mechanism. Plasmid invasion experiments revealed that pcnR is essential for the persistence of the mcr-1-bearing IncI2 plasmid in the bacterial populations. Additionally, single-copy mcr-1 gene still exerted a fitness cost to host bacteria, and negatively affected the persistence of the IncI2 plasmid in competitive co-cultures. These findings demonstrate that maintaining mcr-1 plasmid at a single copy is essential for its persistence, and explain the significantly reduced prevalence of mcr-1 following the ban of colistin as a growth promoter in China.


Assuntos
Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Escherichia coli/genética , Plasmídeos , Proteínas de Ligação a RNA/fisiologia , Antibacterianos/farmacologia , Colistina/farmacologia
5.
PLoS Genet ; 16(8): e1008965, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760058

RESUMO

The mobilizable resistance island Salmonella genomic island 1 (SGI1) is specifically mobilized by IncA and IncC conjugative plasmids. SGI1, its variants and IncC plasmids propagate multidrug resistance in pathogenic enterobacteria such as Salmonella enterica serovars and Proteus mirabilis. SGI1 modifies and uses the conjugation apparatus encoded by the helper IncC plasmid, thus enhancing its own propagation. Remarkably, although SGI1 needs a coresident IncC plasmid to excise from the chromosome and transfer to a new host, these elements have been reported to be incompatible. Here, the stability of SGI1 and its helper IncC plasmid, each expressing a different fluorescent reporter protein, was monitored using fluorescence-activated cell sorting (FACS). Without selective pressure, 95% of the cells segregated into two subpopulations containing either SGI1 or the helper plasmid. Furthermore, FACS analysis revealed a high level of SGI1-specific fluorescence in IncC+ cells, suggesting that SGI1 undergoes active replication in the presence of the helper plasmid. SGI1 replication was confirmed by quantitative PCR assays, and extraction and restriction of its plasmid form. Deletion of genes involved in SGI1 excision from the chromosome allowed a stable coexistence of SGI1 with its helper plasmid without selective pressure. In addition, deletion of S003 (rep) or of a downstream putative iteron-based origin of replication, while allowing SGI1 excision, abolished its replication, alleviated the incompatibility with the helper plasmid and enabled its cotransfer to a new host. Like SGI1 excision functions, rep expression was found to be controlled by AcaCD, the master activator of IncC plasmid transfer. Transient SGI1 replication seems to be a key feature of the life cycle of this family of genomic islands. Sequence database analysis revealed that SGI1 variants encode either a replication initiator protein with a RepA_C domain, or an alternative replication protein with N-terminal replicase and primase C terminal 1 domains.


Assuntos
Proteínas de Bactérias/genética , Conjugação Genética/genética , Ilhas Genômicas/genética , Fosfoproteínas/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Cromossomos/efeitos dos fármacos , Cromossomos/genética , DNA Helicases/genética , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/efeitos dos fármacos , Proteus mirabilis/genética , Salmonella enterica/genética , Transativadores/genética
6.
Mol Syst Biol ; 17(10): e10335, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665940

RESUMO

Antibiotic resistance threatens our ability to treat infectious diseases, spurring interest in alternative antimicrobial technologies. The use of bacterial conjugation to deliver CRISPR-cas systems programmed to precisely eliminate antibiotic-resistant bacteria represents a promising approach but requires high in situ DNA transfer rates. We have optimized the transfer efficiency of conjugative plasmid TP114 using accelerated laboratory evolution. We hence generated a potent conjugative delivery vehicle for CRISPR-cas9 that can eliminate > 99.9% of targeted antibiotic-resistant Escherichia coli in the mouse gut microbiota using a single dose. We then applied this system to a Citrobacter rodentium infection model, achieving full clearance within four consecutive days of treatment.


Assuntos
Microbiota , Probióticos , Animais , Sistemas CRISPR-Cas/genética , Conjugação Genética , Edição de Genes , Camundongos
7.
Nucleic Acids Res ; 48(16): 8815-8827, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32556263

RESUMO

Bacteria have evolved defence mechanisms against bacteriophages. Restriction-modification systems provide innate immunity by degrading invading DNAs that lack proper methylation. CRISPR-Cas systems provide adaptive immunity by sampling the genome of past invaders and cutting the DNA of closely related DNA molecules. These barriers also restrict horizontal gene transfer mediated by conjugative plasmids. IncC conjugative plasmids are important contributors to the global dissemination of multidrug resistance among pathogenic bacteria infecting animals and humans. Here, we show that IncC conjugative plasmids are highly resilient to host defence systems during entry into a new host by conjugation. Using a TnSeq strategy, we uncover a conserved operon containing five genes (vcrx089-vcrx093) that confer a novel host defence evasion (hde) phenotype. We show that vcrx089-vcrx090 promote resistance against type I restriction-modification, whereas vcrx091-vcxr093 promote CRISPR-Cas evasion by repairing double-strand DNA breaks via recombination between short sequence repeats. vcrx091, vcrx092 and vcrx093 encode a single-strand binding protein, and a single-strand annealing recombinase and double-strand exonuclease related to Redß and λExo of bacteriophage λ, respectively. Homologous genes of the integrative and conjugative element R391 also provide CRISPR-Cas evasion. Hence, the conserved hde operon considerably broadens the host range of large families of mobile elements spreading multidrug resistance.


Assuntos
Sistemas CRISPR-Cas , Conjugação Genética , Enzimas de Restrição-Modificação do DNA/genética , Escherichia coli/genética , Plasmídeos/genética , Vibrio cholerae/genética , Bacteriófago lambda/genética , Transferência Genética Horizontal , Óperon
8.
Environ Microbiol ; 22(1): 158-169, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31715642

RESUMO

Cell to cell DNA transfer between Thermus thermophilus, or transjugation, requires the natural competence apparatus (NCA) of the recipient cell and a DNA donation machinery in the donor. In T. thermophilus HB27, two mobile genetic elements with functional similarities to Integrative and Conjugative Elements (ICEs) coexist, ICETh1 encoding the DNA transfer apparatus and ICETh2, encoding a putative replication module. Here, we demonstrate that excision and integration of both elements depend on a single tyrosine recombinase encoded by ICETh2, and that excision is not required but improves the transfer of these elements to a recipient cell. These findings along with previous results suggest that ICETh1 and ICETh2 depend on each other for spreading among T. thermophilus by transjugation.


Assuntos
Conjugação Genética , Sequências Repetitivas Dispersas , Thermus thermophilus/genética , Recombinases/genética
9.
PLoS Genet ; 13(3): e1006705, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28355215

RESUMO

IncC conjugative plasmids and Salmonella genomic island 1 (SGI1) and relatives are frequently associated with multidrug resistance of clinical isolates of pathogenic Enterobacteriaceae. SGI1 is specifically mobilized in trans by IncA and IncC plasmids (commonly referred to as A/C plasmids) following its excision from the chromosome, an event triggered by the transcriptional activator complex AcaCD encoded by these helper plasmids. Although SGI1 is not self-transmissible, it carries three genes, traNS, traHS and traGS, coding for distant homologs of the predicted mating pore subunits TraNC, TraHC and TraGC, respectively, encoded by A/C plasmids. Here we investigated the regulation of traNS and traHGS and the role of these three genes in the transmissibility of SGI1. Transcriptional fusion of the promoter sequences of traNS and traHGS to the reporter gene lacZ confirmed that expression of these genes is inducible by AcaCD. Mating experiments using combinations of deletion mutants of SGI1 and the helper IncC plasmid pVCR94 revealed complex interactions between these two mobile genetic elements. Whereas traNC and traHGC are essential for IncC plasmid transfer, SGI1 could rescue null mutants of each individual gene revealing that TraNS, TraHS and TraGS are functional proteins. Complementation assays of individual traC and traS mutants showed that not only do TraNS/HS/GS replace TraNC/HC/GC in the mating pore encoded by IncC plasmids but also that traGS and traHS are both required for SGI1 optimal transfer. In fact, remodeling of the IncC-encoded mating pore by SGI1 was found to be essential to enhance transfer rate of SGI1 over the helper plasmid. Furthermore, traGS was found to be crucial to allow DNA transfer between cells bearing IncC helper plasmids, thereby suggesting that by remodeling the mating pore SGI1 disables an IncC-encoded entry exclusion mechanism. Hence traS genes facilitate the invasion by SGI1 of cell populations bearing IncC plasmids.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Ilhas Genômicas/genética , Salmonella enterica/genética , Deleção de Sequência/genética , Cromossomos/genética , DNA Bacteriano/genética , Escherichia coli/genética , Regulação da Expressão Gênica no Desenvolvimento , Sequências Repetitivas Dispersas/genética , Plasmídeos/genética , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/crescimento & desenvolvimento , Salmonella enterica/patogenicidade
10.
J Bacteriol ; 201(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30858294

RESUMO

Conjugative plasmids of incompatibility group C (IncC), formerly known as A/C2, disseminate antibiotic resistance genes globally in diverse pathogenic species of Gammaproteobacteria. Salmonella genomic island 1 (SGI1) can be mobilized by IncC plasmids and was recently shown to reshape the conjugative type IV secretion system (T4SS) encoded by these plasmids to evade entry exclusion. Entry exclusion blocks DNA translocation between cells containing identical or highly similar plasmids. Here, we report that the protein encoded by the entry exclusion gene of IncC plasmids (eexC) mediates entry exclusion in recipient cells through recognition of the IncC-encoded TraGC protein in donor cells. Phylogenetic analyses based on EexC and TraGC homologs predicted the existence of at least three different exclusion groups among IncC-related conjugative plasmids. Mating assays using Eex proteins encoded by representative IncC and IncA (former A/C1) and related untyped plasmids confirmed these predictions and showed that the IncC and IncA plasmids belong to the C exclusion group, thereby explaining their apparent incompatibility despite their compatible replicons. Representatives of the two other exclusion groups (D and E) are untyped conjugative plasmids found in Aeromonas sp. Finally, we determined through domain swapping that the carboxyl terminus of the EexC and EexE proteins controls the specificity of these exclusion groups. Together, these results unravel the role of entry exclusion in the apparent incompatibility between IncA and IncC plasmids while shedding light on the importance of the TraG subunit substitution used by SGI1 to evade entry exclusion.IMPORTANCE IncA and IncC conjugative plasmids drive antibiotic resistance dissemination among several pathogenic species of Gammaproteobacteria due to the diversity of drug resistance genes that they carry and their ability to mobilize antibiotic resistance-conferring genomic islands such as SGI1 of Salmonella enterica While historically grouped as "IncA/C," IncA and IncC replicons were recently confirmed to be compatible and to abolish each other's entry into the cell in which they reside during conjugative transfer. The significance of our study is in identifying an entry exclusion system that is shared by IncA and IncC plasmids. It impedes DNA transfer to recipient cells bearing a plasmid of either incompatibility group. The entry exclusion protein of this system is unrelated to any other known entry exclusion proteins.


Assuntos
Conjugação Genética , Gammaproteobacteria/metabolismo , Transferência Genética Horizontal , Plasmídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Gammaproteobacteria/genética , Plasmídeos/classificação
11.
Appl Environ Microbiol ; 84(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29654185

RESUMO

Integrative and conjugative elements (ICEs) of the SXT/R391 family are key drivers of the spread of antibiotic resistance in Vibrio cholerae, the infectious agent of cholera, and other pathogenic bacteria. The SXT/R391 family of ICEs was defined based on the conservation of a core set of 52 genes and site-specific integration into the 5' end of the chromosomal gene prfC Hence, the integrase gene int has been intensively used as a marker to detect SXT/R391 ICEs in clinical isolates. ICEs sharing most core genes but differing by their integration site and integrase gene have been recently reported and excluded from the SXT/R391 family. Here we explored the prevalence and diversity of atypical ICEs in GenBank databases and their relationship with typical SXT/R391 ICEs. We found atypical ICEs in V. cholerae isolates that predate the emergence and expansion of typical SXT/R391 ICEs in the mid-1980s in seventh-pandemic toxigenic V. cholerae strains O1 and O139. Our analyses revealed that while atypical ICEs are not associated with antibiotic resistance genes, they often carry cation efflux pumps, suggesting heavy metal resistance. Atypical ICEs constitute a polyphyletic group likely because of occasional recombination events with typical ICEs. Furthermore, we show that the alternative integration and excision genes of atypical ICEs remain under the control of SetCD, the main activator of the conjugative functions of SXT/R391 ICEs. Together, these observations indicate that substitution of the integration/excision module and change of specificity of integration do not preclude atypical ICEs from inclusion into the SXT/R391 family.IMPORTANCEVibrio cholerae is the causative agent of cholera, an acute intestinal infection that remains to this day a world public health threat. Integrative and conjugative elements (ICEs) of the SXT/R391 family have played a major role in spreading antimicrobial resistance in seventh-pandemic V. cholerae but also in several species of Enterobacteriaceae Most epidemiological surveys use the integrase gene as a marker to screen for SXT/R391 ICEs in clinical or environmental strains. With the recent reports of closely related elements that carry an alternative integrase gene, it became urgent to investigate whether ICEs that have been left out of the family are a liability for the accuracy of such screenings. In this study, based on comparative genomics, we broaden the SXT/R391 family of ICEs to include atypical ICEs that are often associated with heavy metal resistance.


Assuntos
Proteínas de Bactérias/genética , Integrases/genética , Vibrio cholerae/genética , Sequência de Bases , Cólera/microbiologia , Farmacorresistência Bacteriana/genética , Enterobacteriaceae/genética , Mutagênese Insercional , Fatores de Terminação de Peptídeos/genética , Recombinação Genética , Alinhamento de Sequência
12.
PLoS Genet ; 11(6): e1005298, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26061412

RESUMO

Integrative and Conjugative Elements (ICEs) of the SXT/R391 family disseminate multidrug resistance among pathogenic Gammaproteobacteria such as Vibrio cholerae. SXT/R391 ICEs are mobile genetic elements that reside in the chromosome of their host and eventually self-transfer to other bacteria by conjugation. Conjugative transfer of SXT/R391 ICEs involves a transient extrachromosomal circular plasmid-like form that is thought to be the substrate for single-stranded DNA translocation to the recipient cell through the mating pore. This plasmid-like form is thought to be non-replicative and is consequently expected to be highly unstable. We report here that the ICE R391 of Providencia rettgeri is impervious to loss upon cell division. We have investigated the genetic determinants contributing to R391 stability. First, we found that a hipAB-like toxin/antitoxin system improves R391 stability as its deletion resulted in a tenfold increase of R391 loss. Because hipAB is not a conserved feature of SXT/R391 ICEs, we sought for alternative and conserved stabilization mechanisms. We found that conjugation itself does not stabilize R391 as deletion of traG, which abolishes conjugative transfer, did not influence the frequency of loss. However, deletion of either the relaxase-encoding gene traI or the origin of transfer (oriT) led to a dramatic increase of R391 loss correlated with a copy number decrease of its plasmid-like form. This observation suggests that replication initiated at oriT by TraI is essential not only for conjugative transfer but also for stabilization of SXT/R391 ICEs. Finally, we uncovered srpMRC, a conserved locus coding for two proteins distantly related to the type II (actin-type ATPase) parMRC partitioning system of plasmid R1. R391 and plasmid stabilization assays demonstrate that srpMRC is active and contributes to reducing R391 loss. While partitioning systems usually stabilizes low-copy plasmids, srpMRC is the first to be reported that stabilizes a family of ICEs.


Assuntos
Conjugação Genética , Elementos de DNA Transponíveis , Gammaproteobacteria/genética , Genes Bacterianos , Família Multigênica , Fatores R/genética , Replicação do DNA , Farmacorresistência Bacteriana/genética
13.
Nucleic Acids Res ; 43(4): 2045-56, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25662215

RESUMO

Integrative and conjugative elements (ICEs) of the SXT/R391 family have been recognized as key drivers of antibiotic resistance dissemination in the seventh-pandemic lineage of Vibrio cholerae. SXT/R391 ICEs propagate by conjugation and integrate site-specifically into the chromosome of a wide range of environmental and clinical Gammaproteobacteria. SXT/R391 ICEs bear setC and setD, two conserved genes coding for a transcriptional activator complex that is essential for activation of conjugative transfer. We used chromatin immunoprecipitation coupled with exonuclease digestion (ChIP-exo) and RNA sequencing (RNA-seq) to characterize the SetCD regulon of three representative members of the SXT/R391 family. We also identified the DNA sequences bound by SetCD in MGIVflInd1, a mobilizable genomic island phylogenetically unrelated to SXT/R391 ICEs that hijacks the conjugative machinery of these ICEs to drive its own transfer. SetCD was found to bind a 19-bp sequence that is consistently located near the promoter -35 element of SetCD-activated genes, a position typical of class II transcriptional activators. Furthermore, we refined our understanding of the regulation of excision from and integration into the chromosome for SXT/R391 ICEs and demonstrated that de novo expression of SetCD is crucial to allow integration of the incoming ICE DNA into a naive host following conjugative transfer.


Assuntos
Proteínas de Bactérias/metabolismo , Conjugação Genética , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulon , Transativadores/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/química , Ilhas Genômicas , Mutação , Motivos de Nucleotídeos , Regiões Operadoras Genéticas , Regiões Promotoras Genéticas , Transativadores/genética , Ativação Transcricional
14.
PLoS Genet ; 10(10): e1004714, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340549

RESUMO

Dissemination of antibiotic resistance genes occurs mostly by conjugation, which mediates DNA transfer between cells in direct contact. Conjugative plasmids of the IncA/C incompatibility group have become a substantial threat due to their broad host-range, the extended spectrum of antimicrobial resistance they confer, their prevalence in enteric bacteria and their very efficient spread by conjugation. However, their biology remains largely unexplored. Using the IncA/C conjugative plasmid pVCR94ΔX as a prototype, we have investigated the regulatory circuitry that governs IncA/C plasmids dissemination and found that the transcriptional activator complex AcaCD is essential for the expression of plasmid transfer genes. Using chromatin immunoprecipitation coupled with exonuclease digestion (ChIP-exo) and RNA sequencing (RNA-seq) approaches, we have identified the sequences recognized by AcaCD and characterized the AcaCD regulon. Data mining using the DNA motif recognized by AcaCD revealed potential AcaCD-binding sites upstream of genes involved in the intracellular mobility functions (recombination directionality factor and mobilization genes) in two widespread classes of genomic islands (GIs) phylogenetically unrelated to IncA/C plasmids. The first class, SGI1, confers and propagates multidrug resistance in Salmonella enterica and Proteus mirabilis, whereas MGIVmi1 in Vibrio mimicus belongs to a previously uncharacterized class of GIs. We have demonstrated that through expression of AcaCD, IncA/C plasmids specifically trigger the excision and mobilization of the GIs at high frequencies. This study provides new evidence of the considerable impact of IncA/C plasmids on bacterial genome plasticity through their own mobility and the mobilization of genomic islands.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Ilhas Genômicas/genética , Plasmídeos/genética , Escherichia coli/genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Proteus mirabilis/genética , Salmonella enterica/genética
15.
J Bacteriol ; 198(3): 565-77, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26598364

RESUMO

UNLABELLED: The intestinal pathogen Clostridium difficile is an urgent public health threat that causes antibiotic-associated diarrhea and is a leading cause of fatal nosocomial infections in the United States. C. difficile rates of recurrence and mortality have increased in recent years due to the emergence of so-called "hypervirulent" epidemic strains. A great deal of the basic biology of C. difficile has not been characterized. Recent findings that flagellar motility, toxin synthesis, and type IV pilus (TFP) formation are regulated by cyclic diguanylate (c-di-GMP) reveal the importance of this second messenger for C. difficile gene regulation. However, the function(s) of TFP in C. difficile remains largely unknown. Here, we examine TFP-dependent phenotypes and the role of c-di-GMP in controlling TFP production in the historical 630 and epidemic R20291 strains of C. difficile. We demonstrate that TFP contribute to C. difficile biofilm formation in both strains, but with a more prominent role in R20291. Moreover, we report that R20291 is capable of TFP-dependent surface motility, which has not previously been described in C. difficile. The expression and regulation of the pilA1 pilin gene differs between R20291 and 630, which may underlie the observed differences in TFP-mediated phenotypes. The differences in pilA1 expression are attributable to greater promoter-driven transcription in R20291. In addition, R20291, but not 630, upregulates c-di-GMP levels during surface-associated growth, suggesting that the bacterium senses its substratum. The differential regulation of surface behaviors in historical and epidemic C. difficile strains may contribute to the different infection outcomes presented by these strains. IMPORTANCE: How Clostridium difficile establishes and maintains colonization of the host bowel is poorly understood. Surface behaviors of C. difficile are likely relevant during infection, representing possible interactions between the bacterium and the intestinal environment. Pili mediate bacterial interactions with various surfaces and contribute to the virulence of many pathogens. We report that type IV pili (TFP) contribute to biofilm formation by C. difficile. TFP are also required for surface motility, which has not previously been demonstrated for C. difficile. Furthermore, an epidemic-associated C. difficile strain showed higher pilin gene expression and greater dependence on TFP for biofilm production and surface motility. Differences in TFP regulation and their effects on surface behaviors may contribute to increased virulence in recent epidemic strains.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/classificação , Clostridioides difficile/fisiologia , Fímbrias Bacterianas/classificação , Fímbrias Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Bactérias/genética , Biofilmes , Clostridioides difficile/patogenicidade , Regiões Promotoras Genéticas , Virulência
16.
J Antimicrob Chemother ; 71(11): 3046-3049, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27494920

RESUMO

OBJECTIVES: The aim of the study was to identify the determinant responsible for erythromycin resistance in Helcococcus kunzii clinical isolate UCN99 and to characterize the genetic support and environment of this novel gene. METHODS: MICs were determined using the broth microdilution method according to EUCAST guidelines. The entire genome sequence of H. kunzii UCN99 was determined using a 454/Roche GS Junior sequencer. The fragment encompassing the new resistance gene and its own promoter was cloned into the pAT29 shuttle vector and the recombinant plasmid pAT29Ωerm(47) was expressed in both Staphylococcus aureus and Streptococcus agalactiae. The transcription start site (TSS) was experimentally determined by 5' RACE-PCR. RESULTS: UCN99 exhibited a constitutive macrolide/lincosamide/streptogramin B (MLSB) resistance phenotype, suggesting the presence of an Erm protein. WGS allowed the identification of a novel gene, named erm(47), encoding a protein sharing 44%-48% amino acid identity with known Erm methylases. In both S. aureus and S. agalactiae, the introduction of pAT29Ωerm(47) conferred a significant increase (≥16-fold) in MICs of all macrolides and lincosamides tested, as well as a 4-fold increase in MICs of quinupristin (streptogramin B), confirming the MLSB resistance. The TSS identification revealed the presence of a short leader peptide, potentially implicated in a translational attenuation mechanism. It was also demonstrated that erm(47) was harboured by a 81 kb genomic island integrated into a chromosomal gene. CONCLUSIONS: This is the first description of a novel MLSB resistance determinant, named erm(47). The prevalence of this gene among Gram-positive cocci must be further investigated to determine its clinical significance.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Firmicutes/efeitos dos fármacos , Genes Bacterianos , Lincosamidas/farmacologia , Macrolídeos/farmacologia , Estreptogramina B/farmacologia , Cromossomos Bacterianos , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Firmicutes/genética , Expressão Gênica , Testes de Sensibilidade Microbiana , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/genética , Sítio de Iniciação de Transcrição
17.
J Bacteriol ; 197(24): 3822-33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26438816

RESUMO

UNLABELLED: Integrative and conjugative elements (ICEs) of the SXT/R391 family are the main contributors to acquired multidrug resistance in the seventh pandemic lineage of Vibrio cholerae, the etiological agent of the diarrheal disease cholera. Conjugative transfer of SXT/R391 ICEs is triggered by antibiotics and agents promoting DNA damage through RecA-dependent autoproteolysis of SetR, an ICE-encoded λ CI-like repressor. Here, we describe the role of CroS, a distant λ Cro homolog, as a key component contributing to the regulation of expression of the activator SetCD that orchestrates the expression of the conjugative transfer genes. We show that deletion of croS abolishes the SOS response-dependent induction of SXT despite the presence of a functional setR gene. Using quantitative reverse transcription-PCR and lacZ reporter assays, we also show that CroS represses setR and setCD expression by binding to operator sites shared with SetR. Furthermore, we provide evidence of an additional operator site bound by SetR and CroS. Finally, we show that SetCD expression generates a positive feedback loop due to SXT excision and replication in a fraction of the cell population. Together, these results refine our understanding of the genetic regulation governing the propagation of major vectors of multidrug resistance. IMPORTANCE: Healthcare systems worldwide are challenged by an alarming drug resistance crisis caused by the massive and rapid propagation of antibiotic resistance genes and the associated emergence of multidrug-resistant pathogenic bacteria. SXT/R391 ICEs contribute to this phenomenon not only in clinical and environmental vibrios but also in several members of the family Enterobacteriaceae. We have identified and characterized here the regulator CroS as a key factor in the stimulation of conjugative transfer of these ICEs in response to DNA-damaging agents. We have also untangled conflicting evidence regarding autoactivation of transfer by the master activator of SXT/R391 ICEs, SetCD. Discovery of CroS provides a clearer and more complete understanding of the regulatory network that governs the dissemination of SXT/R391 ICEs in bacterial populations.


Assuntos
Proteínas de Bactérias/genética , Conjugação Genética/genética , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteínas Repressoras/genética , Vibrio cholerae/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Bacteriófago lambda/genética , Dano ao DNA/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Dados de Sequência Molecular , Proteínas Repressoras/metabolismo , Resposta SOS em Genética/genética , Transcrição Gênica/genética , Proteínas Virais Reguladoras e Acessórias
18.
J Bacteriol ; 197(5): 819-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25512308

RESUMO

Clostridium difficile is an anaerobic Gram-positive bacterium that causes intestinal infections with symptoms ranging from mild diarrhea to fulminant colitis. Cyclic diguanosine monophosphate (c-di-GMP) is a bacterial second messenger that typically regulates the switch from motile, free-living to sessile and multicellular behaviors in Gram-negative bacteria. Increased intracellular c-di-GMP concentration in C. difficile was recently shown to reduce flagellar motility and to increase cell aggregation. In this work, we investigated the role of the primary type IV pilus (T4P) locus in c-di-GMP-dependent cell aggregation. Inactivation of two T4P genes, pilA1 (CD3513) and pilB1 (CD3512), abolished pilus formation and significantly reduced cell aggregation under high c-di-GMP conditions. pilA1 is preceded by a putative c-di-GMP riboswitch, predicted to be transcriptionally active upon c-di-GMP binding. Consistent with our prediction, high intracellular c-di-GMP concentration increased transcript levels of T4P genes. In addition, single-round in vitro transcription assays confirmed that transcription downstream of the predicted transcription terminator was dose dependent and specific to c-di-GMP binding to the riboswitch aptamer. These results support a model in which T4P gene transcription is upregulated by c-di-GMP as a result of its binding to an upstream transcriptionally activating riboswitch, promoting cell aggregation in C. difficile.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/fisiologia , GMP Cíclico/metabolismo , Fímbrias Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Riboswitch , Proteínas de Bactérias/genética , Clostridioides difficile/genética , Fímbrias Bacterianas/genética , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
19.
Curr Genet ; 61(4): 497-502, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25800812

RESUMO

The anaerobic Gram-positive bacterium Clostridium difficile causes intestinal infections responsible for symptoms ranging from mild diarrhea to fulminant colitis. Like other bacteria, C. difficile needs to sense and integrate environmental signals in order to adapt to changes and thrive in its environment. The second messenger cyclic diguanosine monophosphate (c-di-GMP) was recently recognized as a quasi-ubiquitous phenotype coordinator in bacteria. Mostly known to be involved in the transition from motile to sessile and multicellular behaviors in Gammaproteobacteria, c-di-GMP is now known to regulate many other phenotypes from cell morphogenesis to virulence, in many Gram-negative and a few Gram-positive bacteria. Herein, we review recent advances in our understanding of c-di-GMP signaling in the lifecycle of C. difficile.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Biofilmes/crescimento & desenvolvimento , Clostridioides difficile/patogenicidade , GMP Cíclico/análogos & derivados , Enterotoxinas/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , GMP Cíclico/metabolismo , Enterotoxinas/metabolismo , Fenótipo , Riboswitch , Sistemas do Segundo Mensageiro , Virulência
20.
Can J Microbiol ; 61(8): 565-74, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26166710

RESUMO

Considering the medical, biotechnological, and economical importance of actinobacteria, there is a continuous need to improve the tools for genetic engineering of a broad range of these microorganisms. Intergeneric conjugation has proven to be a valuable yet imperfect tool for this purpose. The natural resistance of many actinomycetes to nalidixic acid (Nal) is generally exploited to eliminate the sensitive Escherichia coli donor strain following conjugation. Nevertheless, Nal can delay growth and have other unexpected effects on the recipient strain. To provide an improved alternative to antibiotics, we propose a postconjugational counterselection using a diaminopimelic acid (DAP) auxotrophic donor strain. The DAP-negative phenotype was obtained by introducing a dapA deletion into the popular methylase-negative donor strain E. coli ET12567/pUZ8002. The viability of ET12567 and its ΔdapA mutant exposed to DAP deprivation or Nal selection were compared in liquid pure culture and after mating with Streptomyces coelicolor. Results showed that death of the E. coli ΔdapA Nal-sensitive donor strain occurred more efficiently when subjected to DAP deprivation than when exposed to Nal. Our study shows that postconjugational counterselection based on DAP deprivation circumvents the use of antibiotics and will facilitate the transfer of plasmids into actinomycetes with high biotechnological potential, yet currently not accessible to conjugative techniques.


Assuntos
Actinobacteria/genética , Conjugação Genética , Ácido Diaminopimélico/metabolismo , Escherichia coli/genética , Antibacterianos/metabolismo , Escherichia coli/metabolismo , Ácido Nalidíxico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA