Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(2): 835-841, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31859490

RESUMO

Despite the initial success of extensive efforts to reduce phosphorus (P) loading to Lake Erie as a part of the Great Lakes Water Quality Agreement, Lake Erie appears to be undergoing a re-eutrophication and it is plagued by harmful algal blooms. To offer insights into potential lake responses under differing Maumee River loads and reveal recent changes with time, we explored patterns in phosphorus and chlorophyll a data from 2008 to 2018 collected in western Lake Erie near the mouth of the Maumee River. We found high, but relatively stable Maumee River and lake concentrations of total P (TP) and soluble reactive P (SRP) with no discernable annual or seasonal patterns. Maumee spring TP load was not strongly related to lake TP, and lake SRP concentrations were positively but weakly related to SRP loads. Lake TP was a strong predictor of chlorophyll a, but the relationship was weaker at sites closer to the Maumee. These results highlight spatial differences both in P concentration and the relationship between TP and chlorophyll a, and these indicate that spring phosphorus loads are a weak algal biomass predictor in the portion of the western basin of Lake Erie represented by these sampling stations.


Assuntos
Lagos , Fósforo , Clorofila , Clorofila A , Monitoramento Ambiental , Eutrofização , Rios
2.
Environ Sci Technol ; 51(12): 6745-6755, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28535339

RESUMO

Annual cyanobacterial blooms dominated by Microcystis have occurred in western Lake Erie (U.S./Canada) during summer months since 1995. The production of toxins by bloom-forming cyanobacteria can lead to drinking water crises, such as the one experienced by the city of Toledo in August of 2014, when the city was rendered without drinking water for >2 days. It is important to understand the conditions and environmental cues that were driving this specific bloom to provide a scientific framework for management of future bloom events. To this end, samples were collected and metatranscriptomes generated coincident with the collection of environmental metrics for eight sites located in the western basin of Lake Erie, including a station proximal to the water intake for the city of Toledo. These data were used to generate a basin-wide ecophysiological fingerprint of Lake Erie Microcystis populations in August 2014 for comparison to previous bloom communities. Our observations and analyses indicate that, at the time of sample collection, Microcystis populations were under dual nitrogen (N) and phosphorus (P) stress, as genes involved in scavenging of these nutrients were being actively transcribed. Targeted analysis of urea transport and hydrolysis suggests a potentially important role for exogenous urea as a nitrogen source during the 2014 event. Finally, simulation data suggest a wind event caused microcystin-rich water from Maumee Bay to be transported east along the southern shoreline past the Toledo water intake. Coupled with a significant cyanophage infection, these results reveal that a combination of biological and environmental factors led to the disruption of the Toledo water supply. This scenario was not atypical of reoccurring Lake Erie blooms and thus may reoccur in the future.


Assuntos
Microcystis , Abastecimento de Água , Canadá , Cianobactérias , Eutrofização , Lagos
3.
mLife ; 2(4): 401-415, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38818269

RESUMO

Freshwater harmful algal blooms are often dominated by Microcystis, a phylogenetically cohesive group of cyanobacteria marked by extensive genetic and physiological diversity. We have previously shown that this genetic diversity and the presence of a microbiome of heterotrophic bacteria influences competitive interactions with eukaryotic phytoplankton. In this study, we sought to explain these observations by characterizing Monod equation parameters for resource usage (maximum growth rate µ max, half-saturation value for growth K s, and quota) as a function of N and P levels for four strains (NIES-843, PCC 9701, PCC 7806 [WT], and PCC 7806 ΔmcyB) in presence and absence of a microbiome derived from Microcystis isolated from Lake Erie. Results indicated limited differences in maximum growth rates but more pronounced differences in half-saturation values among Microcystis strains. The largest impact of the microbiome was reducing the minimal nitrogen concentration sustaining growth and reducing half saturation values, with variable results depending on the Microcystis strain. Microcystis strains also differed from each other in their N and P quotas and the extent to which microbiome presence affected them. Our data highlight the importance of the microbiome in altering Microcystis-intrinsic traits, strain competitive hierarchies, and thus bloom dynamics. As quota, µ max, and K s are commonly used in models for harmful algal blooms, our data suggest that model improvement may be possible by incorporating genotype dependencies of resource-use parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA