Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 27(3): 1067-1073, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28205067

RESUMO

This paper reports on the synthesis of a novel donor-acceptor conjugated polymers, P1 and P2 by solvent free eutectic melt polymerization reaction. Triisopropylsilylethynyl(TIPS) substituted benzo[1,2-b:4,5-b']dithiophene(BDT) is used as donor, thienithiophene(TT) and thienopyrroledione(TPD) are utilized as acceptors for demonstrating eutectic polymerization. The most important fact in the solvent-free reaction between solid reactants actually proceeds through bulk liquid phases. Such liquid phases are possible due to the formation of eutectics between the reactants and product(s) and any evolution of heat. Naphthalene is explored in this reaction for forming eutectics with the reactants, resulting in desired polymers. Thermal stability, optical and electrochemical properties of these polymers were determined. Optical band gaps of the polymers were found to be 1.58 and 1.65 eV. Electrochemical studies by cyclic voltametry experiment revealed HOMO and LUMO energy levels to be -5.22, -5.60 eV, and -3.76, -4.16 eV, respectively. The polymers were thermally stable up to 285-400 °C. Thermal, optical and electrochemical studies indicated these materials to be promising candidates in organic electronic applications.

2.
J Hazard Mater ; 379: 120584, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31419722

RESUMO

Water is essential for every living being. Increasing population, mismanagement of water sources, urbanization, industrialization, globalization, and global warming have all contributed to the scarcity of fresh water sources and the growing demand of such resources. Securing and allocating sufficient water resources has thus become one of the current major global challenges. Membrane technology has dominated the field of water purification due to its ease of usage and fabrication with high efficiency. The development of novel membrane materials can hence play a central role in advancing the field of membrane technology. It is noted that polymer-clay nanocomposites have been used widely for treatment of waste water. Nonetheless, not much efforts have been put to functionalize their membranes to be selective for specific targets. This review was organized to offer better insights into various types of functional polymer and clays composite membranes developed for efficient treatment and purification of water/wastewater. Our discussion was extended further to evaluate the efficacy of membrane techniques employed in the water industry against major chemical (e.g., heavy metal, dye, and phenol) and biological contaminants (e.g., biofouling).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA