Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 26(57): 13063-13071, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32458489

RESUMO

Human calcitonin (hCT) is a 32-residue peptide hormone that can aggregate into amyloid fibrils and cause cellular toxicity. In this study, we investigated the inhibition effects of a group of polyphenolic molecules on hCT amyloid formation. Our results suggest that the gallate moiety in epigallocatechin-3-gallate (EGCG), a well-recognized amyloid inhibitor, is not critical for its inhibition function in the hCT amyloid formation. Our results demonstrate that flavonoid compounds, such as myricetin, quercetin, and baicalein, that contain vicinal hydroxyl groups on the phenyl ring effectively prevent hCT fibrillization. This structural feature may also be applied to non-flavonoid polyphenolic inhibitors. Moreover, our results indicate a plausible mechanistic role of these vicinal hydroxyl groups which might include the oxidation to form a quinone and the subsequent covalent linkage with amino acid residues such as lysine or histidine in hCT. This may further disrupt the crucial electrostatic and aromatic interactions involved in the process of hCT amyloid fibril formation. The inhibition activity of the polyphenolic compounds against hCT fibril formation may likely be attributed to a combination of factors such as covalent linkage formation, aromatic stacking, and hydrogen bonding interactions.


Assuntos
Amiloide/química , Amiloide/metabolismo , Calcitonina/metabolismo , Flavonoides/farmacologia , Humanos , Ligação de Hidrogênio , Ligação Proteica
2.
Biopolymers ; 111(5): e23343, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31804717

RESUMO

Human calcitonin (hCT) is a 32-residue peptide that aggregates to form amyloid fibrils under appropriate conditions. In this study, we investigated the effect of the intramolecular disulfide bond formed at the N-terminal region of the peptide in the aggregation kinetics of hCT. Our results indicate that the presence of the disulfide bond in hCT plays a crucial role in forming the critical nucleus needed for fibril formation, facilitating the rate of hCT amyloidogenesis. Furthermore, we reported for the first time the effects of cholesterol, cholesterol sulfate, and 3ß-[N-(dimethylaminoethane)carbamoyl]-cholesterol (DC-cholesterol) on the amyloid formation of oxidized hCT. Our results show that while cholesterol does not affect amyloidogenesis of oxidized hCT, high concentrations of cholesterol sulfate exhibits a moderate inhibiting activity on hCT amyloid formation. In particular, our results show that DC-cholesterol strongly inhibits amyloidogenesis of oxidized hCT in a dose-dependent manner. Further studies at different pH conditions imply the crucial impact of electrostatic and hydrogen bonding interactions in mediating the interplay of hCT and the surface of DC-cholesterol vesicles and the inhibiting function of DC-cholesterol on hCT fibrillization.


Assuntos
Amiloide/metabolismo , Calcitonina/metabolismo , Colesterol/química , Dissulfetos/química , Amiloide/química , Calcitonina/química , Ésteres do Colesterol/química , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Microscopia de Força Atômica , Agregados Proteicos/fisiologia , Domínios Proteicos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA