Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1398000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081308

RESUMO

Immunity, as defined by systems biology, encompasses a holistic response throughout the body, characterized by intricate connections with various tissues and compartments. However, this concept has been rarely explored in kidney transplantation. In this proof-of-concept study, we investigated a direct association between the allograft phenotype and serum protein signatures. Time-matched samples of graft biopsies and blood serum were collected in a heterogeneous cohort of kidney-transplanted patients (n = 15) for bulk RNA sequencing and proteomics, respectively. RNA transcripts exhibit distinct and reproducible, coregulated gene networks with specific functional profiles. We measured 159 serum proteins and investigated correlations with gene expression networks. Two opposing axes-one related to metabolism and the other to inflammation-were identified. They may represent a biological continuum between the allograft and the serum and correlate with allograft function, but not with interstitial fibrosis or proteinuria. For signature validation, we used two independent proteomic data sets (n = 21). Our findings establish a biological link between the allograft transcriptome and the blood serum proteome, highlighting systemic immune effects in kidney transplantation and offering a promising framework for developing allograft-linked biomarkers.


Assuntos
Aloenxertos , Proteínas Sanguíneas , Transplante de Rim , Proteômica , Transcriptoma , Humanos , Transplante de Rim/efeitos adversos , Feminino , Masculino , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Aloenxertos/imunologia , Pessoa de Meia-Idade , Adulto , Proteômica/métodos , Biomarcadores/sangue , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/genética , Rejeição de Enxerto/sangue , Proteoma , Idoso , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Rim/metabolismo , Rim/imunologia , Rim/patologia
2.
Cardiovasc Res ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041203

RESUMO

BACKGROUND AND AIMS: The distinct functions of immune cells in atherosclerosis have been mostly defined by preclinical mouse studies. Contrastingly, the immune cell composition of human atherosclerotic plaques and their contribution to disease progression is only poorly understood. It remains uncertain whether genetic animal models allow for valuable translational approaches. METHODS AND RESULTS: Single cell RNA-sequencing (scRNA-seq) was performed to define the immune cell landscape in human carotid atherosclerotic plaques. The human immune cell repertoire demonstrated an unexpectedly high heterogeneity and was dominated by cells of the T-cell lineage, a finding confirmed by immunohistochemistry. Bioinformatical integration with 7 mouse scRNA-seq data sets from adventitial and atherosclerotic vascular tissue revealed a total of 51 identities of cell types and differentiation states, of which some were only poorly conserved between species and exclusively found in humans. Locations, frequencies, and transcriptional programs of immune cells in mouse models did not resemble the immune cell landscape in human carotid atherosclerosis. In contrast to standard mouse models of atherosclerosis, human plaque leukocytes were dominated by several T-cell phenotypes with transcriptional hallmarks of T-cell activation and memory formation, T-cell receptor-, and pro-inflammatory signaling. Only mice at the age of 22 months partially resembled the activated T-cell phenotype. In a validation cohort of 43 patients undergoing carotid endarterectomy, the abundance of activated immune cell subsets in the plaque defined by multi-color flow cytometry associated with the extend of clinical atherosclerosis. CONCLUSIONS: Integrative scRNA-seq reveals a substantial difference in the immune cell composition of murine and human carotid atherosclerosis - a finding that questions the translational value of standard mouse models for adaptive immune cell studies. Clinical associations suggest a specific role for T-cell driven (auto-) immunity in human plaque formation and -instability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA