Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Immunol ; 209(6): 1212-1223, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35995507

RESUMO

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia, but, despite advances in treatment, many patients still experience relapse. CLL cells depend on interactions with supportive cells, and nurse-like cells (NLCs) are the major such cell type. However, little is known about how NLCs develop. Here, we performed DNA methylation analysis of CLL patient-derived NLCs using the 850K Illumina array, comparing CD14+ cells at day 1 (monocytes) versus day 14 (NLCs). We found a strong loss of methylation in AP-1 transcription factor binding sites, which may be driven by MAPK signaling. Testing of individual MAPK pathways (MEK, p38, and JNK) revealed a strong dependence on MEK/ERK for NLC development, because treatment of patient samples with the MEK inhibitor trametinib dramatically reduced NLC development in vitro. Using the adoptive transfer Eµ-TCL1 mouse model of CLL, we found that MEK inhibition slowed CLL progression, leading to lower WBC counts and to significantly longer survival time. There were also lower numbers of mouse macrophages, particularly within the M2-like population. In summary, NLC development depends on MEK signaling, and inhibition of MEK leads to increased survival time in vivo. Hence, targeting the MEK/ERK pathway may be an effective treatment strategy for CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Animais , Diferenciação Celular , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Monócitos/metabolismo , Fator de Transcrição AP-1/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108786

RESUMO

Overactivation of immune responses is a hallmark of autoimmune disease pathogenesis. This includes the heightened production of inflammatory cytokines such as Tumor Necrosis Factor α (TNFα), and the secretion of autoantibodies such as isotypes of rheumatoid factor (RF) and anticitrullinated protein antibody (ACPA). Fcγ receptors (FcγR) expressed on the surface of myeloid cells bind Immunoglobulin G (IgG) immune complexes. Recognition of autoantigen-antibody complexes by FcγR induces an inflammatory phenotype that results in tissue damage and further escalation of the inflammatory response. Bromodomain and extra-terminal protein (BET) inhibition is associated with reduced immune responses, making the BET family a potential therapeutic target for autoimmune diseases such as rheumatoid arthritis (RA). In this paper, we examined the BET inhibitor PLX51107 and its effect on regulating FcγR expression and function in RA. PLX51107 significantly downregulated expression of FcγRIIa, FcγRIIb, FcγRIIIa, and the common γ-chain, FcϵR1-γ, in both healthy donor and RA patient monocytes. Consistent with this, PLX51107 treatment attenuated signaling events downstream of FcγR activation. This was accompanied by a significant decrease in phagocytosis and TNFα production. Finally, in a collagen-induced arthritis model, PLX51107-treatment reduced FcγR expression in vivo accompanied by a significant reduction in footpad swelling. These results suggest that BET inhibition is a novel therapeutic approach that requires further exploration as a treatment for patients with RA.


Assuntos
Artrite Reumatoide , Receptores de IgG , Humanos , Artrite Reumatoide/metabolismo , Inflamação/metabolismo , Monócitos/metabolismo , Receptores de IgG/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas do Tecido Nervoso/metabolismo
3.
J Immunol ; 204(7): 1988-1997, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32094205

RESUMO

TLRs, a family of membrane-bound pattern recognition receptors found on innate immune cells, have been well studied in the context of cancer therapy. Activation of these receptors has been shown to induce inflammatory anticancer events, including differentiation and apoptosis, across a wide variety of malignancies. In contrast, intracellular pattern recognition receptors such as NOD-like receptors have been minimally studied. NOD2 is a member of the NOD-like receptor family that initiates inflammatory signaling in response to the bacterial motif muramyl dipeptide. In this study, we examined the influence of NOD2 in human acute myeloid leukemia (AML) cells, demonstrating that IFN-γ treatment upregulated the expression of NOD2 signaling pathway members SLC15A3 and SLC15A4, downstream signaling kinase RIPK2, and the NOD2 receptor itself. This priming allowed for effective induction of caspase-1-dependent cell death upon treatment with muramyl tripeptide phosphatidylethanolamine (MTP-PE), a synthetic ligand for NOD2. Furthermore, the combination of MTP-PE and IFN-γ on AML blasts generated an inflammatory cytokine profile and activated NK cells. In a murine model of AML, dual treatment with MTP-PE and IFN-γ led to a significant increase in mature CD27- CD11b+ NK cells as well as a significant reduction in disease burden and extended survival. These results suggest that NOD2 activation, primed by IFN-γ, may provide a novel therapeutic option for AML.


Assuntos
Apoptose/fisiologia , Leucemia Mieloide Aguda/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Interferon gama/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
4.
J Immunol ; 203(12): 3216-3224, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31732534

RESUMO

Monocytes and macrophages express FcγR that engage IgG immune complexes such as Ab-opsonized pathogens or cancer cells to destroy them by various mechanisms, including phagocytosis. FcγR-mediated phagocytosis is regulated by the concerted actions of activating FcγR and inhibitory receptors, such as FcγRIIb and SIRPα. In this study, we report that another ITIM-containing receptor, PECAM1/CD31, regulates FcγR function and is itself regulated by FcγR activation. First, quantitative RT-PCR and flow cytometry analyses revealed that human monocyte FcγR activation leads to a significant downregulation of CD31 expression, both at the message level and at surface expression, mainly mediated through FcγRIIa. Interestingly, the kinetics of downregulation between the two varied, with surface expression reducing earlier than the message. Experiments to analyze the mechanism behind this discrepancy revealed that the loss of surface expression was because of internalization, which depended predominantly on the PI3 kinase pathway and was independent of FcγR internalization. Finally, functional analyses showed that the downregulation of CD31 expression in monocytes by small interfering RNA enhanced FcγR-mediated phagocytic ability but have little effect on cytokine production. Together, these results suggest that CD31 acts as a checkpoint receptor that could be targeted to enhance FcγR functions in Ab-mediated therapies.


Assuntos
Monócitos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores de IgG/metabolismo , Complexo Antígeno-Anticorpo/imunologia , Doadores de Sangue , Citocinas/metabolismo , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Imunoglobulina G/metabolismo , Fagocitose/genética , Fosfatidilinositol 3-Quinases/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/imunologia
5.
Int Immunol ; 30(8): 375-383, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29868798

RESUMO

Acute myeloid leukemia (AML) remains a significant health problem, with poor outcomes despite chemotherapy and bone marrow transplants. Although one form of AML, acute promyelocytic leukemia (APL), is successfully treated with all-trans retinoic acid (ATRA), this drug is seemingly ineffective against all other forms of AML. Here, we show that ATRA up-regulates CD38 expression on AML blasts to sufficient levels that promote antibody-mediated fratricide following the addition of anti-CD38 daratumumab (DARA). The combination of ATRA plus DARA induced Fc-dependent conjugate formation and cytotoxicity among AML blasts in vitro. Combination treatment also led to reduction in tumor volume and resulted in increased overall survival in murine engraftment models of AML. These results suggest that, although ATRA does not induce differentiation of non-APL, it may be effective as a therapy in conjunction with DARA.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Tretinoína/farmacologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Quimioterapia Combinada , Humanos , Leucemia Mieloide Aguda/patologia , Tretinoína/química , Tretinoína/uso terapêutico , Células Tumorais Cultivadas
6.
J Biol Chem ; 291(27): 14356-14362, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27226587

RESUMO

Nurse-like cells (NLCs) play a central role in chronic lymphocytic leukemia (CLL) because they promote the survival and proliferation of CLL cells. NLCs are derived from the monocyte lineage and are driven toward their phenotype via contact-dependent and -independent signals from CLL cells. Because of the central role of NLCs in promoting disease, new strategies to eliminate or reprogram them are needed. Successful reprogramming may be of extra benefit because NLCs express Fcγ receptors (FcγRs) and thus could act as effector cells within the context of antibody therapy. IFNγ is known to promote the polarization of macrophages toward an M1-like state that is no longer tumor-supportive. In an effort to reprogram the phenotype of NLCs, we found that IFNγ up-regulated the M1-related markers CD86 and HLA-DR as well as FcγRIa. This corresponded to enhanced FcγR-mediated cytokine production as well as rituximab-mediated phagocytosis of CLL cells. In addition, IFNγ down-regulated the expression of CD31, resulting in withdrawal of the survival advantage on CLL cells. These results suggest that IFNγ can re-educate NLCs and shift them toward an effector-like state and that therapies promoting local IFNγ production may be effective adjuvants for antibody therapy in CLL.


Assuntos
Sobrevivência Celular , Interferon gama/administração & dosagem , Leucemia Linfocítica Crônica de Células B/patologia , Antígeno B7-2/metabolismo , Células Cultivadas , Antígenos HLA-DR/metabolismo , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Fagocitose , Receptores de IgG/metabolismo
7.
J Biol Chem ; 291(8): 3895-904, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26694610

RESUMO

Monocytes and macrophages are critical for the effectiveness of monoclonal antibody therapy. Responses to antibody-coated tumor cells are largely mediated by Fcγ receptors (FcγRs), which become activated upon binding to immune complexes. FcγRIIb is an inhibitory FcγR that negatively regulates these responses, and it is expressed on monocytes and macrophages. Therefore, deletion or down-regulation of this receptor may substantially enhance therapeutic outcomes. Here we screened a panel of Toll-like receptor (TLR) agonists and found that those selective for TLR4 and TLR8 could significantly down-regulate the expression of FcγRIIb. Upon further examination, we found that treatment of monocytes with TLR4 agonists could lead to the ubiquitination of FcγRIIb protein. A search of our earlier microarray database of monocytes activated with the TLR7/8 agonist R-848 (in which FcγRIIb was down-regulated) revealed an up-regulation of membrane-associated ring finger (C3HC4) 3 (MARCH3), an E3 ubiquitin ligase. Therefore, we tested whether LPS treatment could up-regulate MARCH3 in monocytes and whether this E3 ligase was involved with LPS-mediated FcγRIIb down-regulation. The results showed that LPS activation of TLR4 significantly increased MARCH3 expression and that siRNA against MARCH3 prevented the decrease in FcγRIIb following LPS treatment. These data suggest that activation of TLR4 on monocytes can induce a rapid down-regulation of FcγRIIb protein and that this involves ubiquitination.


Assuntos
Proteínas de Transporte/metabolismo , Regulação para Baixo/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/metabolismo , Monócitos/metabolismo , Receptores de IgG/biossíntese , Receptor 4 Toll-Like/agonistas , Ubiquitinação/efeitos dos fármacos , Regulação para Baixo/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptor 4 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Ubiquitina-Proteína Ligases , Ubiquitinação/fisiologia
8.
J Biol Chem ; 291(49): 25656-25666, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27780867

RESUMO

Acute myeloid leukemia (AML) is characterized by the proliferation of immature myeloid lineage blasts. Due to its heterogeneity and to the high rate of acquired drug resistance and relapse, new treatment strategies are needed. Here, we demonstrate that IFNγ promotes AML blasts to act as effector cells within the context of antibody therapy. Treatment with IFNγ drove AML blasts toward a more differentiated state, wherein they showed increased expression of the M1-related markers HLA-DR and CD86, as well as of FcγRI, which mediates effector responses to therapeutic antibodies. Importantly, IFNγ was able to up-regulate CD38, the target of the therapeutic antibody daratumumab. Because the antigen (CD38) and effector receptor (FcγRI) were both simultaneously up-regulated on the AML blasts, we tested whether IFNγ treatment of the AML cell lines THP-1 and MV4-11 could stimulate them to target one another after the addition of daratumumab. Results showed that IFNγ significantly increased daratumumab-mediated cytotoxicity, as measured both by 51Cr release and lactate dehydrogenase release assays. We also found that the combination of IFNγ and activation of FcγR led to the release of granzyme B by AML cells. Finally, using a murine NSG model of subcutaneous AML, we found that treatment with IFNγ plus daratumumab significantly attenuated tumor growth. Taken together, these studies show a novel mechanism of daratumumab-mediated killing and a possible new therapeutic strategy for AML.


Assuntos
Anticorpos Monoclonais/farmacologia , Citotoxinas/farmacologia , Interferon gama/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Feminino , Granzimas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Receptores de IgG/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Biol Chem ; 291(6): 3043-52, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26627823

RESUMO

The irreversible Bruton's tyrosine kinase (Btk) inhibitor ibrutinib has shown efficacy against B-cell tumors such as chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma. Fcγ receptors (FcγR) on immune cells such as macrophages play an important role in tumor-specific antibody-mediated immune responses, but many such responses involve Btk. Here we tested the effects of ibrutinib on FcγR-mediated activities in monocytes. We found that ibrutinib did not affect monocyte FcγR-mediated phagocytosis, even at concentrations higher than those achieved physiologically, but suppressed FcγR-mediated cytokine production. We confirmed these findings in macrophages from Xid mice in which Btk signaling is defective. Because calcium flux is a major event downstream of Btk, we tested whether it was involved in phagocytosis. The results showed that blocking intracellular calcium flux decreased FcγR-mediated cytokine production but not phagocytosis. To verify this, we measured activation of the GTPase Rac, which is responsible for actin polymerization. Results showed that ibrutinib did not inhibit Rac activation, nor did the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester). We next asked whether the effect of ibrutinib on monocyte FcγR-mediated cytokine production could be rescued by IFNγ priming because NK cells produce IFNγ in response to antibody therapy. Pretreatment of monocytes with IFNγ abrogated the effects of ibrutinib on FcγR-mediated cytokine production, suggesting that IFNγ priming could overcome this Btk inhibition. Furthermore, in monocyte-natural killer cell co-cultures, ibrutinib did not inhibit FcγR-mediated cytokine production despite doing so in single cultures. These results suggest that combining ibrutinib with monoclonal antibody therapy could enhance chronic lymphocytic leukemia cell killing without affecting macrophage effector function.


Assuntos
Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Macrófagos/metabolismo , Monócitos/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptores de IgG/metabolismo , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Macrófagos/patologia , Camundongos , Monócitos/patologia , Piperidinas , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores de IgG/genética
10.
J Immunol ; 194(6): 2786-95, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25667415

RESUMO

FcγRs are critical mediators of mAb cancer therapies, because they drive cytotoxic processes upon binding of effector cells to opsonized targets. Along with NK cells, monocytes are also known to destroy Ab-coated targets via Ab-dependent cellular cytotoxicity (ADCC). However, the precise mechanisms by which monocytes carry out this function have remained elusive. In this article, we show that human monocytes produce the protease granzyme B upon both FcγR and TLR8 activation. Treatment with TLR8 agonists elicited granzyme B and also enhanced FcγR-mediated granzyme B production in an additive fashion. Furthermore, monocyte-mediated ADCC against cetuximab-coated tumor targets was enhanced by TLR8 agonist treatment, and this enhancement of ADCC required granzyme B. Hence we have identified granzyme B as an important mediator of FcγR function in human monocytes and have uncovered another mechanism by which TLR8 agonists may enhance FcγR-based therapies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Granzimas/metabolismo , Monócitos/metabolismo , Receptor 8 Toll-Like/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Western Blotting , Células Cultivadas , Cetuximab , Análise por Conglomerados , Relação Dose-Resposta a Droga , Granzimas/antagonistas & inibidores , Granzimas/genética , Humanos , Imidazóis/farmacologia , Interleucina-2/genética , Interleucina-2/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , NF-kappa B/genética , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Perforina/genética , Perforina/metabolismo , Quinolinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiazóis/farmacologia , Fatores de Tempo , Receptor 8 Toll-Like/agonistas , Transcriptoma/efeitos dos fármacos
11.
Nanomedicine ; 13(3): 909-920, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27993723

RESUMO

Fluorescent nanodiamonds (FNDs) are nontoxic, infinitely photostable, and emit fluorescence in the near infrared region. Natural killer (NK) cells and monocytes are part of the innate immune system and are crucial to the control of carcinogenesis. FND-mediated stimulation of these cells may serve as a strategy to enhance anti-tumor activity. FNDs were fabricated with a diameter of 70±28 nm. Innate immune cell FND uptake, viability, surface marker expression, and cytokine production were evaluated in vitro. Evaluation of fluorescence emission from the FNDs was conducted in an animal model. In vitro results demonstrated that treatment of immune cells with FNDs resulted in significant dose-dependent FND uptake, no compromise in cell viability, and immune cell activation. FNDs were visualized in an animal model. Hence, FNDs may serve as novel agents with "track and trace" capabilities to stimulate innate immune cell anti-tumor responses, especially as FNDs are amenable to surface-conjugation with immunomodulatory molecules.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Corantes Fluorescentes/uso terapêutico , Imunidade Celular/efeitos dos fármacos , Nanodiamantes/uso terapêutico , Adjuvantes Imunológicos/farmacocinética , Animais , Células Cultivadas , Corantes Fluorescentes/farmacocinética , Humanos , Imunidade Inata/efeitos dos fármacos , Imunoterapia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Nanodiamantes/análise , Neoplasias/imunologia , Neoplasias/terapia , Células RAW 264.7
12.
J Biol Chem ; 290(10): 5960-78, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25593320

RESUMO

Interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK or TXK) are essential mediators of intracellular signaling in both normal and neoplastic T-cells and natural killer (NK) cells. Thus, ITK and RLK inhibitors have therapeutic potential in a number of human autoimmune, inflammatory, and malignant diseases. Here we describe a novel ITK/RLK inhibitor, PRN694, which covalently binds to cysteine residues 442 of ITK and 350 of RLK and blocks kinase activity. Molecular modeling was utilized to design molecules that interact with cysteine while binding to the ATP binding site in the kinase domain. PRN694 exhibits extended target residence time on ITK and RLK and is highly selective for a subset of the TEC kinase family. In vitro cellular assays confirm that PRN694 prevents T-cell receptor- and Fc receptor-induced cellular and molecular activation, inhibits T-cell receptor-induced T-cell proliferation, and blocks proinflammatory cytokine release as well as activation of Th17 cells. Ex vivo assays demonstrate inhibitory activity against T-cell prolymphocytic leukemia cells, and in vivo assays demonstrate durable pharmacodynamic effects on ITK, which reduces an oxazolone-induced delayed type hypersensitivity reaction. These data indicate that PRN694 is a highly selective and potent covalent inhibitor of ITK and RLK, and its extended target residence time enables durable attenuation of effector cells in vitro and in vivo. The results from this study highlight potential applications of this dual inhibitor for the treatment of T-cell- or NK cell-mediated inflammatory, autoimmune, and malignant diseases.


Assuntos
Benzimidazóis/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Tirosina Quinases/metabolismo , Linfócitos T/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/química , Receptores de Antígenos de Linfócitos T/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/imunologia
13.
J Immunol ; 190(6): 2702-11, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23418626

RESUMO

CD20 is a widely validated, B cell-specific target for therapy in B cell malignancies. Rituximab is an anti-CD20 Ab that prolongs survival of chronic lymphocytic leukemia (CLL) patients when combined with chemotherapy. Ofatumumab and GA101 (obinutuzumab) are CD20-directed Abs currently being developed as alternative agents to rituximab in CLL based upon different properties of enhanced direct cell death, NK cell-mediated Ab-dependent cellular cytotoxicity, or complement-dependent cytotoxicity. Despite widespread study, ofatumumab and GA101 have not been compared with each other, nor studied for their interactions with monocytes and macrophages which are critical for the efficacy of anti-CD20 Abs in murine models. In CLL cells, we show that direct cell death and complement-dependent cytotoxicity are greatest with GA101 and ofatumumab, respectively. GA101 promotes enhanced NK cell activation and Ab-dependent cellular cytotoxicity at high Ab concentrations. Ofatumumab elicits superior Ab-dependent cellular phagocytosis with monocyte-derived macrophages. GA101 demonstrated reduced activation of monocytes with diminished pERK, TNF-α release, and FcγRIIa recruitment to lipid rafts. These data demonstrate that GA101 and ofatumumab are both superior to rituximab against CLL cells via different mechanisms of potential tumor elimination. These findings bear relevance to potential combination strategies with each of these anti-CD20 Abs in the treatment of CLL.


Assuntos
Anticorpos Antineoplásicos/toxicidade , Antígenos CD20/imunologia , Sistemas de Liberação de Medicamentos/métodos , Células Matadoras Naturais/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Macrófagos/imunologia , Monócitos/imunologia , Anticorpos Antineoplásicos/uso terapêutico , Antígenos CD20/metabolismo , Linhagem Celular Tumoral , Testes Imunológicos de Citotoxicidade , Humanos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Leucemia Linfocítica Crônica de Células B/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Monócitos/metabolismo , Monócitos/patologia , Células Tumorais Cultivadas
14.
J Biol Chem ; 288(17): 12345-52, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23504312

RESUMO

Fcγ receptor (FcγR) clustering on monocytes/macrophages results in phagocytosis and inflammatory cytokine production, which serve to eliminate antibody-opsonized targets and activate neighboring immune cells. Toll-like receptor 2 (TLR2), which recognizes a range of both bacterial and fungal components, elicits strong proinflammatory responses in these cells when stimulated by ligands, either natural or synthetic. Thus, we explored the possibility that TLR2 agonists could strengthen FcγR activity within the context of antibody therapy. Human peripheral blood monocytes treated with the TLR2 agonist Pam2CSK4 showed significantly enhanced FcγR-mediated cytokine production as well as phagocytic ability. An examination of the molecular mechanism behind this enhancement revealed increased expression of both FcγRIIa and the common γ subunit following Pam2CSK4 treatment. Interestingly however, expression of the inhibitory receptor FcγRIIb was also modestly increased. Further investigation revealed that Pam2CSK4 also dramatically decreased the expression of SHIP, the major mediator of FcγRIIb inhibitory activity. Using a murine Her2/neu solid tumor model of antibody therapy, we found that Pam2CSK4 significantly enhanced the ability of anti-Her2 antibody to reduce the rate of tumor growth. To verify that the FcγR enhancement was not unique to the diacylated Pam2CSK4, we also tested Pam3CSK4, a related triacylated TLR2 agonist. Results showed significant enhancement in FcγR function and expression. Taken together, these findings indicate that TLR2 activation can positively modulate FcγR and suggest that TLR2 agonists should be considered for testing as adjuvants for antitumor antibody therapy.


Assuntos
Lipopeptídeos/farmacologia , Monócitos/metabolismo , Receptores de IgG/biossíntese , Receptor 2 Toll-Like/metabolismo , Animais , Anticorpos Antineoplásicos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/patologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de IgG/genética , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética
15.
J Biol Chem ; 288(37): 26800-9, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23902770

RESUMO

Monocytes/macrophages are potent mediators of antitumor antibody therapy, where they engage target cells via Fcγ receptors (FcγR). Binding of these cells to opsonized tumor targets elicits cytokine production, phagocytosis, and antibody-mediated cellular cytotoxicity. Here we show for the first time that activation of monocyte FcγR results in the secretion of soluble vascular endothelial growth factor receptor-1 (VEGFR-1/sFlt-1), which serves to antagonize VEGF-mediated angiogenesis and tumor growth. Consistent with this, using a murine solid tumor model of antibody therapy, we show that sFlt-1 is involved in restricting tumor growth. Analyzing the mechanism of induction of sFlt-1, we found that the Erk and PI3K pathways were required for transcription, and NF-κB was required for translation. Upon closer examination of the role of NF-κB, we found that a microRNA, miR181a, negatively regulates FcγR-mediated sFlt-1 production and that NF-κB serves to antagonize this microRNA. Taken together, these results demonstrate a novel and biologically important function of monocytes and macrophages during antibody therapy.


Assuntos
Anticorpos Antineoplásicos/farmacologia , MicroRNAs/genética , Neovascularização Patológica , Receptores de IgG/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Células Matadoras Naturais/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/citologia , Monócitos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais
16.
J Biol Chem ; 288(6): 3691-5, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23269671

RESUMO

Burkholderia cenocepacia, the causative agent of cepacia syndrome, primarily affects cystic fibrosis patients, often leading to death. In the lung, epithelial cells serve as the initial barrier to airway infections, yet their responses to B. cenocepacia have not been fully investigated. Here, we examined the molecular responses of human airway epithelial cells to B. cenocepacia infection. Infection led to early signaling events such as activation of Erk, Akt, and NF-κB. Further, TNFα, IL-6, IL-8, and IL-1ß were all significantly induced upon infection, but no IL-1ß was detected in the supernatants. Because caspase-1 is required for IL-1ß processing and release, we examined its expression in airway epithelial cells. Interestingly, little to no caspase-1 was detectable in airway epithelial cells. Transfection of caspase-1 into airway epithelial cells restored their ability to secrete IL-1ß following B. cenocepacia infection, suggesting that a deficiency in caspase-1 is responsible, at least in part, for the attenuated IL-1ß secretion.


Assuntos
Brônquios/metabolismo , Infecções por Burkholderia/metabolismo , Burkholderia cenocepacia , Células Epiteliais/metabolismo , Interleucina-1beta/metabolismo , Mucosa Respiratória/metabolismo , Brônquios/microbiologia , Brônquios/patologia , Infecções por Burkholderia/genética , Infecções por Burkholderia/microbiologia , Infecções por Burkholderia/patologia , Caspase 1/biossíntese , Caspase 1/genética , Linhagem Celular , Citocinas/biossíntese , Citocinas/genética , Células Epiteliais/microbiologia , Células Epiteliais/patologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Interleucina-1beta/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mucosa Respiratória/microbiologia , Mucosa Respiratória/patologia , Transfecção
17.
Blood ; 119(15): 3478-85, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22378844

RESUMO

MicroRNAs (miRs) are small, noncoding RNA molecules with important regulatory functions whose role in regulating natural killer (NK) cell biology is not well defined. Here, we show that miR-155 is synergistically induced in primary human NK cells after costimulation with IL-12 and IL-18, or with IL-12 and CD16 clustering. Over-expression of miR-155 enhanced induction of IFN-γ by IL-12 and IL-18 or CD16 stimulation, whereas knockdown of miR-155 or its disruption suppressed IFN-γ induction in monokine and/or CD16-stimulated NK cells. These effects on the regulation of NK cell IFN-γ expression were found to be mediated at least in part via miR-155's direct effects on the inositol phosphatase SHIP1. Consistent with this, we observed that modulation of miR-155 overrides IL-12 and IL-18-mediated regulation of SHIP1 expression in NK cells. Collectively, our data indicate that miR-155 expression is regulated by stimuli that strongly induce IFN-γ in NK cells such as IL-12, IL-18, and CD16 activation, and that miR-155 functions as a positive regulator of IFN-γ production in human NK cells, at least in part via down-regulating SHIP1. These findings may have clinical relevance for targeting miR-155 in neoplastic disease.


Assuntos
Interferon gama/biossíntese , Células Matadoras Naturais/metabolismo , MicroRNAs/fisiologia , Animais , Células Cultivadas , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/fisiologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Inositol Polifosfato 5-Fosfatases , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-12/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Receptores de IgG/fisiologia
18.
Front Immunol ; 15: 1409333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919608

RESUMO

Introduction: Therapeutic antibodies have become a major strategy to treat oncologic diseases. For chronic lymphocytic leukemia, antibodies against CD20 are used to target and elicit cytotoxic responses against malignant B cells. However, efficacy is often compromised due to a suppressive microenvironment that interferes with cellular immune responses. To overcome this suppression, agonists of pattern recognition receptors have been studied which promote direct cytotoxicity or elicit anti-tumoral immune responses. NOD2 is an intracellular pattern recognition receptor that participates in the detection of peptidoglycan, a key component of bacterial cell walls. This detection then mediates the activation of multiple signaling pathways in myeloid cells. Although several NOD2 agonists are being used worldwide, the potential benefit of these agents in the context of antibody therapy has not been explored. Methods: Primary cells from healthy-donor volunteers (PBMCs, monocytes) or CLL patients (monocytes) were treated with versus without the NOD2 agonist L18-MDP, then antibody-mediated responses were assessed. In vivo, the Eµ-TCL1 mouse model of CLL was used to test the effects of L18-MDP treatment alone and in combination with anti-CD20 antibody. Results: Treatment of peripheral blood mononuclear cells with L18-MDP led to activation of monocytes from both healthy donors and CLL patients. In addition, there was an upregulation of activating FcγR in monocytes and a subsequent increase in antibody-mediated phagocytosis. This effect required the NF-κB and p38 signaling pathways. Treatment with L18-MDP plus anti-CD20 antibody in the Eµ-TCL model of CLL led to a significant reduction of CLL load, as well as to phenotypic changes in splenic monocytes and macrophages. Conclusions: Taken together, these results suggest that NOD2 agonists help overturn the suppression of myeloid cells, and may improve the efficacy of antibody therapy for CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Macrófagos , Proteína Adaptadora de Sinalização NOD2 , Receptores de IgG , Proteína Adaptadora de Sinalização NOD2/agonistas , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/imunologia , Animais , Humanos , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Feminino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fagocitose , Rituximab/farmacologia , Rituximab/uso terapêutico
19.
J Immunol ; 187(2): 635-43, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21697459

RESUMO

The environmental bacterium Burkholderia cenocepacia causes opportunistic lung infections in immunocompromised individuals, particularly in patients with cystic fibrosis. Infections in these patients are associated with exacerbated inflammation leading to rapid decay of lung function, and in some cases resulting in cepacia syndrome, which is characterized by a fatal acute necrotizing pneumonia and sepsis. B. cenocepacia can survive intracellularly in macrophages by altering the maturation of the phagosome, but very little is known on macrophage responses to the intracellular infection. In this study, we have examined the role of the PI3K/Akt signaling pathway in B. cenocepacia-infected monocytes and macrophages. We show that PI3K/Akt activity was required for NF-κB activity and the secretion of proinflammatory cytokines during infection with B. cenocepacia. In contrast to previous observations in epithelial cells infected with other Gram-negative bacteria, Akt did not enhance IκB kinase or NF-κB p65 phosphorylation, but rather inhibited GSK3ß, a negative regulator of NF-κB transcriptional activity. This novel mechanism of modulation of NF-κB activity may provide a unique therapeutic target for controlling excessive inflammation upon B. cenocepacia infection.


Assuntos
Infecções por Burkholderia/imunologia , Burkholderia cenocepacia/imunologia , Quinase 3 da Glicogênio Sintase/fisiologia , Quinase I-kappa B/fisiologia , Mediadores da Inflamação/fisiologia , Macrófagos/imunologia , Monócitos/imunologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Animais , Infecções por Burkholderia/patologia , Regulação para Baixo/imunologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Monócitos/microbiologia , Monócitos/patologia , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação/imunologia , Transdução de Sinais/imunologia , Fator de Transcrição RelA/antagonistas & inibidores
20.
Cells ; 12(11)2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37296612

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is characterized by the presence of dense stroma that is enriched in hyaluronan (HA), with increased HA levels associated with more aggressive disease. Increased levels of the HA-degrading enzymes hyaluronidases (HYALs) are also associated with tumor progression. In this study, we evaluate the regulation of HYALs in PDAC. METHODS: Using siRNA and small molecule inhibitors, we evaluated the regulation of HYALs using quantitative real-time PCR (qRT-PCR), Western blot analysis, and ELISA. The binding of BRD2 protein on the HYAL1 promoter was evaluated by chromatin immunoprecipitation (ChIP) assay. Proliferation was evaluated by WST-1 assay. Mice with xenograft tumors were treated with BET inhibitors. The expression of HYALs in tumors was analyzed by immunohistochemistry and by qRT-PCR. RESULTS: We show that HYAL1, HYAL2, and HYAL3 are expressed in PDAC tumors and in PDAC and pancreatic stellate cell lines. We demonstrate that inhibitors targeting bromodomain and extra-terminal domain (BET) proteins, which are readers of histone acetylation marks, primarily decrease HYAL1 expression. We show that the BET family protein BRD2 regulates HYAL1 expression by binding to its promoter region and that HYAL1 downregulation decreases proliferation and enhances apoptosis of PDAC and stellate cell lines. Notably, BET inhibitors decrease the levels of HYAL1 expression in vivo without affecting the levels of HYAL2 or HYAL3. CONCLUSIONS: Our results demonstrate the pro-tumorigenic role of HYAL1 and identify the role of BRD2 in the regulation of HYAL1 in PDAC. Overall, these data enhance our understanding of the role and regulation of HYAL1 and provide the rationale for targeting HYAL1 in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Hialuronoglucosaminidase/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Proteínas , Ácido Hialurônico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA