Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Glob Chang Biol ; 30(2): e17177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348630

RESUMO

Maintaining or even increasing crop yields while reducing nitrous oxide (N2 O) emissions is necessary to reconcile food security and climate change, while the metric of yield-scaled N2 O emission (i.e., N2 O emissions per unit of crop yield) is at present poorly understood. Here we conducted a global meta-analysis with more than 6000 observations to explore the variation patterns and controlling factors of yield-scaled N2 O emissions for maize, wheat and rice and associated potential mitigation options. Our results showed that the average yield-scaled N2 O emissions across all available data followed the order wheat (322 g N Mg-1 , with the 95% confidence interval [CI]: 301-346) > maize (211 g N Mg-1 , CI: 198-225) > rice (153 g N Mg-1 , CI: 144-163). Yield-scaled N2 O emissions for individual crops were generally higher in tropical or subtropical zones than in temperate zones, and also showed a trend towards lower intensities from low to high latitudes. This global variation was better explained by climatic and edaphic factors than by N fertilizer management, while their combined effect predicted more than 70% of the variance. Furthermore, our analysis showed a significant decrease in yield-scaled N2 O emissions with increasing N use efficiency or in N2 O emissions for production systems with cereal yields >10 Mg ha-1 (maize), 6.6 Mg ha-1 (wheat) or 6.8 Mg ha-1 (rice), respectively. This highlights that N use efficiency indicators can be used as valuable proxies for reconciling trade-offs between crop production and N2 O mitigation. For all three major staple crops, reducing N fertilization by up to 30%, optimizing the timing and placement of fertilizer application or using enhanced-efficiency N fertilizers significantly reduced yield-scaled N2 O emissions at similar or even higher cereal yields. Our data-driven assessment provides some key guidance for developing effective and targeted mitigation and adaptation strategies for the sustainable intensification of cereal production.


Assuntos
Agricultura , Oryza , Agricultura/métodos , Triticum , Zea mays , Fertilizantes , Óxido Nitroso/análise , Produtos Agrícolas , Grão Comestível/química , Solo
2.
Glob Chang Biol ; 30(6): e17368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847421

RESUMO

Nitrogen oxides (NOx) play an important role for atmospheric chemistry and radiative forcing. However, NOx emissions from the vast northern circumpolar permafrost regions have not been studied in situ due to limitations of measurement techniques. Our goals were to validate the offline analytical technique, and based on this, to widely quantify in situ NOx emissions from peatlands in the southern Eurasian permafrost region. To this end, we conducted a comparison of online and offline flux measurements in 2018 and 2019 using the synthetic air flushing, steady-state opaque chamber method. With differences in annual average and cumulative fluxes less than 0.1 µg N m-2 h-1 and 0.01 kg N ha-1 year-1, the online and offline fluxes were in good agreement, demonstrating the feasibility of conducting offline measurements in remote regions without power supply. The flux measurements over 2 years showed obvious NOx emissions of 0.05-0.14 and 0.13-0.30 kg N ha-1 year-1 in the hollow and hummock microtopography of permafrost peatlands, respectively. The rapid expansion of alder (Alnus sibirica) in the peatlands induced by permafrost degradation significantly increased soil mineral N contents and NOx emissions depending on the age of alder (0.64-1.74 and 1.44-2.20 kg N ha-1 year-1 from the alder forests with tree ages of 1-10 years and 11-20 years, respectively). Alder expansion also intensively altered the thermal state of permafrost including the sharp increases of soil temperatures during the non-growing season from October to April and active layer thickness. This study provides the first in situ evidences of NOx emissions from the northern circumpolar permafrost regions and uncovers the well-documented expansion of alders can substantially stimulate NOx emissions and thus, significantly affect air quality, radiative forcing, and ecosystem productivity in the pristine regions.


Assuntos
Óxidos de Nitrogênio , Pergelissolo , Solo , Solo/química , Óxidos de Nitrogênio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental
3.
Glob Chang Biol ; 30(1): e16989, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37888833

RESUMO

Anthropogenic nitrogen (N) loading alters soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) abundances, likely leading to substantial changes in soil nitrification. However, the factors and mechanisms determining the responses of soil AOA:AOB and nitrification to N loading are still unclear, making it difficult to predict future changes in soil nitrification. Herein, we synthesize 68 field studies around the world to evaluate the impacts of N loading on soil ammonia oxidizers and nitrification. Across a wide range of biotic and abiotic factors, climate is the most important driver of the responses of AOA:AOB to N loading. Climate does not directly affect the N-stimulation of nitrification, but does so via climate-related shifts in AOA:AOB. Specifically, climate modulates the responses of AOA:AOB to N loading by affecting soil pH, N-availability and moisture. AOB play a dominant role in affecting nitrification in dry climates, while the impacts from AOA can exceed AOB in humid climates. Together, these results suggest that climate-related shifts in soil ammonia-oxidizing community maintain the N-stimulation of nitrification, highlighting the importance of microbial community composition in mediating the responses of the soil N cycle to N loading.


Assuntos
Amônia , Solo , Solo/química , Nitrificação , Nitrogênio/análise , Oxirredução , Microbiologia do Solo , Archaea , Filogenia
4.
Glob Chang Biol ; 30(2): e17199, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385944

RESUMO

Denitrification plays a critical role in soil nitrogen (N) cycling, affecting N availability in agroecosystems. However, the challenges in direct measurement of denitrification products (NO, N2 O, and N2 ) hinder our understanding of denitrification N losses patterns across the spatial scale. To address this gap, we constructed a data-model fusion method to map the county-scale denitrification N losses from China's rice fields over the past decade. The estimated denitrification N losses as a percentage of N application from 2009 to 2018 were 11.8 ± 4.0% for single rice, 12.4 ± 3.7% for early rice, and 11.6 ± 3.1% for late rice. The model results showed that the spatial heterogeneity of denitrification N losses is primarily driven by edaphic and climatic factors rather than by management practices. In particular, diffusion and production rates emerged as key contributors to the variation of denitrification N losses. These findings humanize a 38.9 ± 4.8 kg N ha-1 N loss by denitrification and challenge the common hypothesis that substrate availability drives the pattern of N losses by denitrification in rice fields.


Assuntos
Oryza , Desnitrificação , Projetos de Pesquisa , Nitrogênio , China
5.
Glob Chang Biol ; 29(12): 3489-3502, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36825371

RESUMO

Urban land-use change has the potential to affect local to global biogeochemical carbon (C) and nitrogen (N) cycles and associated greenhouse gas (GHG) fluxes. We conducted a meta-analysis to (1) assess the effects of urbanization-induced land-use conversion on soil nitrous oxide (N2 O) and methane (CH4 ) fluxes, (2) quantify direct N2 O emission factors (EFd ) of fertilized urban soils used, for example, as lawns or forests, and (3) identify the key drivers leading to flux changes associated with urbanization. On average, urbanization increases soil N2 O emissions by 153%, to 3.0 kg N ha-1  year-1 , while rates of soil CH4 uptake are reduced by 50%, to 2.0 kg C ha-1  year-1 . The global mean annual N2 O EFd of fertilized lawns and urban forests is 1.4%, suggesting that urban soils can be regional hotspots of N2 O emissions. On a global basis, conversion of land to urban greenspaces has increased soil N2 O emission by 0.46 Tg N2 O-N year-1 and decreased soil CH4 uptake by 0.58 Tg CH4 -C year-1 . Urbanization driven changes in soil N2 O emission and CH4 uptake are associated with changes in soil properties (bulk density, pH, total N content, and C/N ratio), increased temperature, and management practices, especially fertilizer use. Overall, our meta-analysis shows that urbanization increases soil N2 O emissions and reduces the role of soils as a sink for atmospheric CH4 . These effects can be mitigated by avoiding soil compaction, reducing fertilization of lawns, and by restoring native ecosystems in urban landscapes.


Assuntos
Ecossistema , Solo , Solo/química , Mudança Climática , Urbanização , Florestas , Óxido Nitroso/análise , Metano/análise , Dióxido de Carbono/análise
6.
Glob Chang Biol ; 29(17): 4910-4923, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37183810

RESUMO

Arable soil continues to be the dominant anthropogenic source of nitrous oxide (N2 O) emissions owing to application of nitrogen (N) fertilizers and manures across the world. Using laboratory and in situ studies to elucidate the key factors controlling soil N2 O emissions remains challenging due to the potential importance of multiple complex processes. We examined soil surface N2 O fluxes in an arable soil, combined with in situ high-frequency measurements of soil matrix oxygen (O2 ) and N2 O concentrations, in situ 15 N labeling, and N2 O 15 N site preference (SP). The in situ O2 concentration and further microcosm visualized spatiotemporal distribution of O2 both suggested that O2 dynamics were the proximal determining factor to matrix N2 O concentration and fluxes due to quick O2 depletion after N fertilization. Further SP analysis and in situ 15 N labeling experiment revealed that the main source for N2 O emissions was bacterial denitrification during the hot-wet summer with lower soil O2 concentration, while nitrification or fungal denitrification contributed about 50.0% to total emissions during the cold-dry winter with higher soil O2 concentration. The robust positive correlation between O2 concentration and SP values underpinned that the O2 dynamics were the key factor to differentiate the composite processes of N2 O production in in situ structured soil. Our findings deciphered the complexity of N2 O production processes in real field conditions, and suggest that O2 dynamics rather than stimulation of functional gene abundances play a key role in controlling soil N2 O production processes in undisturbed structure soils. Our results help to develop targeted N2 O mitigation measures and to improve process models for constraining global N2 O budget.


Assuntos
Agricultura , Solo , Solo/química , Nitrificação , Bactérias , Nitrogênio , Óxido Nitroso/química , Oxigênio
7.
Glob Chang Biol ; 29(24): 6846-6855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37800369

RESUMO

Crop residues are important inputs of carbon (C) and nitrogen (N) to soils and thus directly and indirectly affect nitrous oxide (N2 O) emissions. As the current inventory methodology considers N inputs by crop residues as the sole determining factor for N2 O emissions, it fails to consider other underlying factors and processes. There is compelling evidence that emissions vary greatly between residues with different biochemical and physical characteristics, with the concentrations of mineralizable N and decomposable C in the residue biomass both enhancing the soil N2 O production potential. High concentrations of these components are associated with immature residues (e.g., cover crops, grass, legumes, and vegetables) as opposed to mature residues (e.g., straw). A more accurate estimation of the short-term (months) effects of the crop residues on N2 O could involve distinguishing mature and immature crop residues with distinctly different emission factors. The medium-term (years) and long-term (decades) effects relate to the effects of residue management on soil N fertility and soil physical and chemical properties, considering that these are affected by local climatic and soil conditions as well as land use and management. More targeted mitigation efforts for N2 O emissions, after addition of crop residues to the soil, are urgently needed and require an improved methodology for emission accounting. This work needs to be underpinned by research to (1) develop and validate N2 O emission factors for mature and immature crop residues, (2) assess emissions from belowground residues of terminated crops, (3) improve activity data on management of different residue types, in particular immature residues, and (4) evaluate long-term effects of residue addition on N2 O emissions.


Assuntos
Produtos Agrícolas , Óxido Nitroso , Óxido Nitroso/análise , Solo/química , Poaceae , Biomassa , Nitrogênio/análise , Agricultura , Fertilizantes
8.
J Environ Manage ; 342: 118276, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37276627

RESUMO

High N-fertilizer applications to conventional vegetable production systems are associated with substantial emissions of NH3, a key substance that triggers haze pollution and ecosystem eutrophication and thus, causing considerable damage to human and ecosystem health. While N fertilization effects on NH3 volatilization from cereal crops have been relatively well studied, little is known about the magnitude and yield-scaled emissions of NH3 from vegetable systems. Here we report on a 2-year field study investigating the effect of various types and rates of fertilizer application on NH3 emissions and crop yields for a pepper-lettuce-cabbage rotation system in southwest China. Our results show that both NH3 emissions and direct emission factors of applied N varied largely across seasons over the 2-year period, highlighting the importance of measurements spanning entire cropping years. Across all treatments varying from solely applying urea fertilizers to only using organic manures, annual NH3 emissions ranged from 0.64 to 92.4 kg N ha-1 yr-1 (or 0.07-6.84 g N kg-1 dry matter), equivalent to 0.05-5.99% of the applied N. At annual scale, NH3 emissions correlated positively with soil δ15N values, indicating that soil δ15N may be used as an indicator for NH3 losses. NH3 emissions from treatments fertilized partially or fully with manure were significantly lower compared with the urea fertilized treatment, while vegetable yields remained unaffected. Moreover, full substitution of urea by manure as compared to the partial substitution further reduced the yield-scaled annual NH3 emissions by 79.0-92.4%. Across all vegetable seasons, there is a significant negative relationship between yield-scaled NH3 emissions and crop N use efficiency. Overall, our results suggest that substituting urea by manure and reducing total N inputs by 30-50% allows to reduce NH3 emissions without jeopardizing yields. Such a change in management provides a feasible option to achieve environmental sustainability and food security in conventional vegetable systems.


Assuntos
Nitrogênio , Verduras , Humanos , Agricultura/métodos , Óxido Nitroso/análise , Fertilizantes/análise , Esterco , Ecossistema , Solo , Ureia , China , Amônia
9.
Glob Chang Biol ; 28(14): 4395-4408, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35403777

RESUMO

Nitrogen (N) fertilizer application to agricultural soils results in substantial emissions of nitric oxide (NO), a key substance in tropospheric chemistry involved in climate forcing and air pollution. However, the estimates of global cropland NO emissions remain uncertain due to a lack of information on direct NO emission factors (EFd s) of applied N for various cropping systems at seasonal or annual scales. Here we quantified the crop-specific seasonal and annual-scale NO EFd s through synthesizing 1094 measurements from 125 field-based studies worldwide. The global mean crop-specific seasonal EFd was 0.53%, with the highest for vegetables (0.75%). Among cereal crops, the EFd of maize (0.45%) or wheat (0.47%) was about three times higher than for rice (0.12%). At annual scale, the mean EFd across all cropping systems was 0.58%, with tea plantations having the highest (1.54%). For other cropping systems, the annual-scale EFd s ranged from 0.02% to 1.07%. Besides crop type, also soil organic carbon, total N, and pH as well as N fertilizer type were the main factors explaining the variations of NO EFd s. Based on obtained specific EFd s for each crop type, we estimated that NO emissions due to the use of synthetic fertilizers from global croplands are about 0.42-0.62 Tg N year-1 . Our budgets are relatively lower if compared to estimates derived by the use of IPCC defaults for NO emissions (0.72-1.66 Tg N year-1 ) or reported elsewhere (0.67-1.04 Tg N year-1 ). In our estimates, cash crops (vegetable, tea and orchard), which cover only 9% of the world cropland area, contributed about 31% to total NO emissions from global fertilized croplands. Overall, our meta-analysis provides improved crop-specific NO EFd s reflecting current stage of knowledge. The work also highlights the relative importance of cash crop production as sources for atmospheric NO, that is, agricultural systems on which mitigation efforts may focus.


Assuntos
Fertilizantes , Óxido Nítrico , Agricultura , Carbono , China , Produtos Agrícolas , Fertilizantes/análise , Óxido Nitroso/análise , Solo/química , Chá
10.
Glob Chang Biol ; 27(12): 2807-2821, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33742490

RESUMO

Globally, about 50% of all arable soils are classified as acidic. As crop and plant growth are significantly hampered under acidic soil conditions, many farmers, but increasingly as well forest managers, apply lime to raise the soil pH. Besides its direct effect on soil pH, liming also affects soil C and nutrient cycles and associated greenhouse gas (GHG) fluxes. In this meta-analysis, we reviewed 1570 observations reported in 121 field-based studies worldwide, to assess liming effects on soil GHG fluxes and plant productivity. We found that liming significantly increases crop yield by 36.3%. Also, soil organic C (SOC) stocks were found to increase by 4.51% annually, though soil respiration is stimulated too (7.57%). Moreover, liming was found to reduce soil N2 O emission by 21.3%, yield-scaled N2 O emission by 21.5%, and CH4 emission and yield-scaled CH4 emission from rice paddies by 19.0% and 12.4%, respectively. Assuming that all acid agricultural soils are limed periodically, liming results in a total GHG balance benefit of 633-749 Tg CO2 -eq year-1 due to reductions in soil N2 O emissions (0.60-0.67 Tg N2 O-N year-1 ) and paddy soil CH4 emissions (1.75-2.21 Tg CH4  year-1 ) and increases in SOC stocks (65.7-110 Tg C year-1 ). However, this comes at the cost of an additional CO2 release (c. 624-656 Tg CO2  year-1 ) deriving from lime mining, transport and application, and lime dissolution, so that the overall GHG balance is likely neutral. Nevertheless, liming of acid agricultural soils will increase yields by at least 6.64 × 108  Mg year-1 , covering the food supply of 876 million people. Overall, our study shows for the first time that a general strategy of liming of acid agricultural soils is likely to result in an increasing sustainability of global agricultural production, indicating the potential benefit of liming acid soils for climate change mitigation and food security.


Assuntos
Mudança Climática , Solo , Agricultura , Compostos de Cálcio , Dióxido de Carbono/análise , Segurança Alimentar , Humanos , Metano/análise , Óxido Nitroso/análise , Óxidos
11.
Glob Chang Biol ; 27(2): 327-339, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33073899

RESUMO

Increasing levels of atmospheric CO2 are expected to enhance crop yields and alter soil greenhouse gas fluxes from rice paddies. While elevated CO2 ( E CO 2 ) effects on CH4 emissions from rice paddies have been studied in some detail, little is known how E CO 2 might affect N2 O fluxes or yield-scaled emissions. Here, we report on a multi-site, multi-year in-situ FACE (free-air CO2 enrichment) study, aiming to determine N2 O fluxes and crop yields from Chinese subtropical rice systems as affected by E CO 2 . In this study, we tested various N fertilization and residue addition treatments, with rice being grown under either E CO 2 (+200 µmol/mol) or ambient control. Across the six site-years, rice straw and grain yields under E CO 2 were increased by 9%-40% for treatments fertilized with ≥150 kg N/ha, while seasonal N2 O emissions were decreased by 23%-73%. Consequently, yield-scaled N2 O emissions were significantly lower under E CO 2 . For treatments receiving insufficient fertilization (≤125 kg N/ha), however, no significant E CO 2 effects on N2 O emissions were observed. The mitigating effect of E CO 2 upon N2 O emissions is closely associated with plant N uptake and a reduction of soil N availability. Nevertheless, increases in yield-scaled N2 O emissions with increasing N surplus suggests that N surplus is a useful indicator for assessing N2 O emissions from rice paddies. Our findings indicate that with rising atmospheric CO2 soil N2 O emissions from rice paddies will decrease, given that the farmers' N fertilization is usually sufficient for crop growth. The expected decrease in N2 O emissions was calculated to compensate 24% of the simultaneously observed increase in CH4 emissions under E CO 2 . This shows that for an agronomic and environmental assessment of E CO 2 effects on rice systems, not only CH4 emissions, but also N2 O fluxes and yield-scaled emissions need to be considered for identifying most climate-friendly and economically viable options for future rice production.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , Dióxido de Carbono/análise , Metano/análise , Óxido Nitroso/análise , Solo
12.
Ecol Appl ; 31(6): e02368, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33938594

RESUMO

Pastoral systems are the dominant livestock production system in arid and semiarid regions of sub-Saharan Africa (SSA). They are often the only form of agriculture that can be practiced due to unfavorable climate and soil fertility levels that prevent crop cultivation. Pastoralism can have negative impacts on the environment, including land degradation, greenhouse gas emissions and other gases to the atmosphere, soil erosion, water pollution and biodiversity loss. Here, we review the current knowledge on nitrogen (N) cycling, storage, and loss pathways, with an emphasis on identification of N emission hotspots. Our review reports a large uncertainty in the amount of N lost as ammonia from excreta and manure storage, as well as N losses via nitrate and DON leaching. We also found that another major N loss pathway (18%), soil N2 emissions, has not yet been measured. In order to summarize the available information, we use a virtual pastoral farm, with characteristics and management practices obtained from a real farm, Kapiti Research Station in Kenya. For outlining N flows at this virtual farm, we used published data, data from global studies, satellite imagery and geographic information system (GIS) tools. Our results show that N inputs in pastoral systems are dominated by atmospheric N deposition (˜80%), while inputs due to biological nitrogen fixation seems to play a smaller role. A major N loss pathway is nitrogen leaching (nitrate > DON) from pastures (33%). Cattle enclosures (bomas), where animals are kept during night, represent N emissions hotspots, representing 16% of the total N losses from the system. N losses via ammonia volatilization and N2 O were four and three orders of magnitude higher from bomas than from the pasture, respectively. Based on our results, we further identify future research requirements and highlight the urgent need for experimental data collection to quantify nitrogen losses from manure in animal congregation areas. Such information is needed to improve our understanding on N cycling in pastoral systems in semiarid regions and to provide practical recommendations for managers that can help with decision-making on management strategies in pastoral systems in semiarid savannas.


Assuntos
Fertilizantes , Gado , Agricultura , Animais , Bovinos , Fertilizantes/análise , Quênia , Esterco , Nitrogênio/análise , Solo
13.
Eur J Agron ; 128: None, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34345158

RESUMO

The productivity of permanent temperate cut grasslands is mainly driven by weather, soil characteristics, botanical composition and management. To adapt management to climate change, adjusting the cutting dates to reflect earlier onset of growth and expansion of the vegetation period is particularly important. Simulations of cut grassland productivity under climate change scenarios demands management settings to be dynamically derived from actual plant development rather than using static values derived from current management operations. This is even more important in the alpine region, where the predicted temperature increase is twice as high as compared to the global or Northern Hemispheric average. For this purpose, we developed a dynamic management module that provides timing of cutting and manuring events when running the biogeochemical model LandscapeDNDC. We derived the dynamic management rules from long-term harvest measurements and monitoring data collected at pre-alpine grassland sites located in S-Germany and belonging to the TERENO monitoring network. We applied the management module for simulations of two grassland sites covering the period 2011-2100 and driven by scenarios that reflect the two representative concentration pathways (RCP) 4.5 and 8.5 and evaluated yield developments of different management regimes. The management module was able to represent timing of current management operations in high agreement with several years of field observations (r² > 0.88). Even more, the shift of the first cutting dates scaled to a +1 °C temperature increase simulated with the climate change scenarios (-9.1 to -17.1 days) compared well to the shift recorded by the German Weather Service (DWD) in the study area from 1991-2016 (-9.4 to -14.0 days). In total, the shift in cutting dates and expansion of the growing season resulted in 1-2 additional cuts per year until 2100. Thereby, climate change increased yields of up to 6 % and 15 % in the RCP 4.5 and 8.5 scenarios with highest increases mainly found for dynamically adapted grassland management going along with increasing fertilization rates. In contrast, no or only minor yield increases were associated with simulations restricted to fertilization rates of 170 kg N ha-1 yr-1 as required by national legislations. Our study also shows that yields significantly decreased in drought years, when soil moisture is limiting plant growth but due to comparable high precipitation and water holding capacity of soils, this was observed mainly in the RCP 8.5 scenario in the last decades of the century.

14.
Glob Chang Biol ; 26(4): 2292-2303, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31833173

RESUMO

Gaseous nitrogen (N) emissions, especially emissions of dinitrogen (N2 ) and ammonia (NH3 ), have long been considered as the major pathways of N loss from flooded rice paddies. However, no studies have simultaneously evaluated the overall response of gaseous N losses to improved N fertilization practices due to the difficulties to directly measure N2 emissions from paddy soils. We simultaneously quantified emissions of N2 (using membrane inlet mass spectrometry), NH3 and nitrous oxide (N2 O) from a flooded paddy field in southern China over an entire rice-growing season. Our field experiment included three treatments: a control treatment (no N addition) and two N fertilizer (220 kg N/ha) application methods, the traditional surface application of N fertilizer and the incorporation of N fertilizer into the soil. Our results show that over the rice-growing season, the cumulative gaseous N losses from the surface application treatment accounted for 13.5% (N2 ), 19.1% (NH3 ), 0.2% (N2 O) and 32.8% (total gaseous N loss) of the applied N fertilizer. Compared with the surface application treatment, the incorporation of N fertilizer into the soil decreased the emissions of NH3 , N2 and N2 O by 14.2%, 13.3% and 42.5%, respectively. Overall, the incorporation of N fertilizer into the soil significantly reduced the total gaseous N loss by 13.8%, improved the fertilizer N use efficiency by 14.4%, increased the rice yield by 13.9% and reduced the gaseous N loss intensity (gaseous N loss/rice yield) by 24.3%. Our results indicate that the incorporation of N fertilizer into the soil is an effective agricultural management practice in ensuring food security and environmental sustainability in flooded paddy ecosystems.

15.
Glob Chang Biol ; 25(5): 1839-1851, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30801860

RESUMO

Climate warming will affect terrestrial ecosystems in many ways, and warming-induced changes in terrestrial carbon (C) cycling could accelerate or slow future warming. So far, warming experiments have shown a wide range of C flux responses, across and within biome types. However, past meta-analyses of C flux responses have lacked sufficient sample size to discern relative responses for a given biome type. For instance grasslands contribute greatly to global terrestrial C fluxes, and to date grassland warming experiments provide the opportunity to evaluate concurrent responses of both plant and soil C fluxes. Here, we compiled data from 70 sites (in total 622 observations) to evaluate the response of C fluxes to experimental warming across three grassland types (cold, temperate, and semi-arid), warming methods, and short (≤3 years) and longer-term (>3 years) experiment lengths. Overall, our meta-analysis revealed that experimental warming stimulated C fluxes in grassland ecosystems with regard to both plant production (e.g., net primary productivity (NPP) 15.4%; aboveground NPP (ANPP) by 7.6%, belowground NPP (BNPP) by 11.6%) and soil respiration (Rs) (9.5%). However, the magnitude of C flux stimulation varied significantly across cold, temperate and semi-arid grasslands, in that responses for most C fluxes were larger in cold than temperate or semi-arid ecosystems. In semi-arid and temperate grasslands, ecosystem respiration (Reco) was more sensitive to warming than gross primary productivity (GPP), while the opposite was observed for cold grasslands, where warming produced a net increase in whole-ecosystem C storage. However, the stimulatory effect of warming on ANPP and Rs observed in short-term studies (≤3 years) in both cold and temperate grasslands disappeared in longer-term experiments (>3 years). These results highlight the importance of conducting long-term warming experiments, and in examining responses across a wide range of climate.


Assuntos
Ciclo do Carbono , Mudança Climática , Pradaria , Carbono/química , Carbono/metabolismo , Clima , Ecossistema , Plantas/metabolismo , Solo/química , Fatores de Tempo
16.
Geoderma ; 348: 12-20, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31423022

RESUMO

Biochar has been reported to reduce emission of nitrous oxide (N2O) from soils, but the mechanisms responsible remain fragmentary. For example, it is unclear how biochar effects on N2O emissions are mediated through biochar effects on soil gross N turnover rates. Hence, we conducted an incubation study with three contrasting agricultural soils from Kenya (an Acrisol cultivated for 10-years (Acrisol10); an Acrisol cultivated for over 100-years (Acrisol100); a Ferralsol cultivated for over 100 years (Ferralsol)). The soils were amended with biochar at either 2% or 4% w/w. The 15N pool dilution technique was used to quantify gross N mineralization and nitrification and microbial consumption of extractable N over a 20-day incubation period at 25 °C and 70% water holding capacity of the soil, accompanied by N2O emissions measurements. Direct measurements of N2 emissions were conducted using the helium gas flow soil core method. N2O emissions varied across soils with higher emissions in Acrisols than in Ferralsols. Addition of 2% biochar reduced N2O emissions in all soils by 53 to 78% with no significant further reduction induced by addition at 4%. Biochar effects on soil nitrate concentrations were highly variable across soils, ranging from a reduction, no effect and an increase. Biochar addition stimulated gross N mineralization in Acrisol-10 and Acrisol-100 soils at both addition rates with no effect observed for the Ferralsol. In contrast, gross nitrification was stimulated in only one soil but only at a 4% application rate. Also, biochar effects on increased NH4 + immobilization and NO3 -consumption strongly varied across the three investigated soils. The variable and bidirectional biochar effects on gross N turnover in conjunction with the unambiguous and consistent reduction of N2O emissions suggested that the inhibiting effect of biochar on soil N2O emission seemed to be decoupled from gross microbial N turnover processes. With biochar application, N2 emissions were about an order of magnitude higher for Acrisol-10 soils compared to Acrisol-100 and Ferralsol-100 soils. Our N2O and N2 flux data thus support an explanation of direct promotion of gross N2O reduction by biochar rather than effects on soil extractable N dynamics. Effects of biochar on soil extractable N and gross N turnover, however, might be highly variable across different soils as found here for three typical agricultural soils of Kenya.

17.
J Anim Physiol Anim Nutr (Berl) ; 103(5): 1325-1337, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31318115

RESUMO

The present study evaluated the effects of energetic undernutrition on liquid and solid digesta passage and on nutrient digestibility as well as their interdependencies. Using a 4 x 4 Latin square design, 12 growing Boran steers (183 ± 15.2 kg live weight) were allocated to four levels of metabolizable energy (ME) supply fixed at 100, 80, 60 and 40% of individual maintenance energy requirements (MER) during four experimental periods. Each period comprised three weeks of adaptation, two weeks of data collection and two weeks of recovery. Diets MER80, MER60 and MER40 only consisted of Rhodes grass hay (RGH), whereas diet MER100 contained (as fed) 83% RGH, 8% cotton seed meal and 9% sugarcane molasses. Feed intake differed between treatments (p < .001) and ranged from 40 ± 0.6 g dry matter (DM) per kg of metabolic weight (kg0.75 ) in MER40 to 81 ± 1.3 g DM in MER100. Digestibility of neutral and acid detergent fibre (NDF, ADF) was highest at MER80, whereas rumen retention time of liquid and solid digesta was longest at MER40. The correlation of rumen retention time of liquid and solid digesta with the digestibility of proximate diet components was weak but positive, whereas the correlation of liquid and solid rumen retention time with quantitative feed and nutrient intake was strong (p < .01) and negative. Our results suggest that tropical cattle are able to buffer a moderate energy deficit by prolonging rumen retention time of digesta and hence improve diet digestibility. Conversely, a severe energy deficit cannot be buffered by digestive adaptation mechanisms and will inevitably lead to productivity losses.


Assuntos
Ração Animal , Bovinos/fisiologia , Digestão/fisiologia , Conteúdo Gastrointestinal/química , Motilidade Gastrointestinal/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Ingestão de Energia , Masculino , Nutrientes
18.
Arch Anim Nutr ; 73(2): 140-157, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30784311

RESUMO

This study aimed at evaluating the effects of feed intake level on the efficiency of rumen microbial protein synthesis (EMPS), nitrogen (N) excretion, and N balance in twelve 18-months old Boran (Bos indicus) steers with initial average liveweight of 183 kg (standard deviation (SD) 15.2). The experiment followed a 4 × 4 complete Latin Square design with four dietary treatments tested in four periods. Each period ran for 5 weeks with 3 weeks of adaptation and 2 weeks of sample collection; separated by 2 weeks of re-feeding. Steers were fed at 100%, 80%, 60%, and 40% of their metabolisable energy requirement for maintenance (MER, referred to as MER100, MER80, MER60, and MER40, respectively). Steers receiving MER80, MER60, and MER40 were only fed Rhodes grass hay. MER100 steers were offered Rhodes grass hay at 80% of their MER and cottonseed meal and sugarcane molasses at each 10% of MER. Mean daily dry matter intake differed between treatments (p < 0.001) and ranged between 2.1 kg/animal (SD 0.13) in MER40 and 4.5 kg/animal (SD 0.31) in MER100. Urinary N excretion and N balance did not differ between MER80, MER60, and MER40. According to contrast test, declining feed intake level from MER80 to MER40 reduced duodenal microbial crude protein flow (p < 0.001), but did not alter the EMPS (g microbial N/kg digestible organic matter intake). Yet, if scaled to N intake, EMPS increased (p < 0.049), whereas total N and faecal N excretions decreased linearly with declining intake level (p < 0.001 for both variables). At similar grass hay intake, duodenal microbial crude protein flow was 41% higher in MER100 than in MER80 steers (p < 0.001). In cattle offered poor-quality tropical forage below their MER, the very low EMPS and thus microbial protein supply aggravate the negative effects of low dietary nutrient and energy intakes in periods of feed shortage.


Assuntos
Ração Animal/análise , Proteínas de Bactérias/metabolismo , Bovinos/fisiologia , Dieta/veterinária , Nitrogênio/metabolismo , Ração Animal/normas , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/metabolismo , Proteínas de Bactérias/genética , Alimentação com Mamadeira , Metabolismo Energético , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Masculino , Distribuição Aleatória
19.
Asian-Australas J Anim Sci ; 32(5): 637-647, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30056650

RESUMO

OBJECTIVE: The study aimed at quantifying seasonal and spatial variations in availability and nutritive value of herbaceous vegetation on native pastures and supplement feedstuffs for domestic ruminants in Western Kenya. METHODS: Samples of herbaceous pasture vegetation (n = 75) and local supplement feedstuffs (n = 46) for cattle, sheep, and goats were collected in 20 villages of three geographic zones (Highlands, Mid-slopes, Lowlands) in Lower Nyando, Western Kenya, over four seasons of one year. Concentrations of dry matter (DM), crude ash (CA), ether extract (EE), crude protein (CP), neutral detergent fibre (NDF), gross energy (GE), and minerals were determined. Apparent total tract organic matter digestibility (dOM) was estimated from in vitro gas production and proximate nutrient concentrations or chemical composition alone using published prediction equations. RESULTS: Nutrient, energy, and mineral concentrations were 52 to 168 g CA, 367 to 741 g NDF, 32 to 140 g CP, 6 to 45 g EE, 14.5 to 18.8 MJ GE, 7.0 to 54.2 g potassium, 0.01 to 0.47 g sodium, 136 to 1825 mg iron, and 0.07 to 0.52 mg selenium/kg DM. The dOM was 416 to 650 g/kg organic matter but differed depending on the estimation method. Nutritive value of pasture herbage was superior to most supplement feedstuffs, but its value strongly declined in the driest season. Biomass yields and concentrations of CP and potassium in pasture herbage were highest in the Highlands amongst the three zones. CONCLUSION: Availability and nutritive value of pasture herbage and supplement feedstuffs greatly vary between seasons and geographical zones, suggesting need for season- and region-specific feeding strategies. Local supplement feedstuffs partly compensate for nutritional deficiencies. However, equations to accurately predict dOM and improved knowledge on nutritional characteristics of tropical ruminant feedstuffs are needed to enhance livestock production in this and similar environments.

20.
Glob Chang Biol ; 24(12): 5919-5932, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30295405

RESUMO

It is widely recommended that crop straw be returned to croplands to maintain or increase soil carbon (C) storage in arable soils. However, because C and nitrogen (N) biogeochemical cycles are closely coupled, straw return may also affect soil reactive N (Nr) losses, but these effects remain uncertain, especially in terms of the interactions between soil C sequestration and Nr losses under straw addition. Here, we conducted a global meta-analysis using 363 publications to assess the overall effects of straw return on soil Nr losses, C sequestration and crop productivity in agroecosystems. Our results show that on average, compared to mineral N fertilization, straw return with same amount of mineral N fertilizer significantly increased soil organic C (SOC) content (14.9%), crop yield (5.1%), and crop N uptake (10.9%). Moreover, Nr losses in the form of nitrous oxide (N2 O) emissions from rice paddies (17.3%), N leaching (8.7%), and runoff (25.6%) were significantly reduced, mainly due to enhanced microbial N immobilization. However, N2 O emissions from upland fields (21.5%) and ammonia (NH3 ) emissions (17.0%) significantly increased following straw return, mainly due to the stimulation of nitrification/denitrification and soil urease activity. The increase in NH3 and N2 O emissions was significantly and negatively correlated with straw C/N ratio and soil clay content. Regarding the interactions between C sequestration and Nr losses, the increase in SOC content following straw return was significantly and positively correlated with the decrease in N leaching and runoff. However, at a global scale, straw return increased net Nr losses from both rice and upland fields due to a greater stimulation of NH3 emissions than the reduction in N leaching and runoff. The trade-offs between increased net Nr losses and soil C sequestration highlight the importance of reasonably managing straw return to soils to limit NH3 emissions without decreasing associated C sequestration potential.


Assuntos
Agricultura , Sequestro de Carbono , Substâncias Húmicas , Nitrogênio/análise , Solo/química , Agricultura/métodos , Fertilizantes/análise , Nitrificação , Óxido Nitroso/análise , Oryza/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA