Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Phys Med Rehabil ; 97(11): 1832-1840, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27373742

RESUMO

OBJECTIVE: To study plasma levels of matrix metalloproteinases (MMPs) as potential markers of recovery during intensive rehabilitation therapy (IRT) after stroke. DESIGN: Prospective and descriptive 3-month follow-up study. SETTING: Rehabilitation unit and research center. PARTICIPANTS: Patients with first-ever ischemic stroke (n=15) enrolled to IRT (≥3h/d and 5d/wk) and healthy volunteers (n=15) (N=30). INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: The primary outcome was to measure plasma MMP3, MMP12, and MMP13 levels and evaluate potential associations with motor/functional scales using a battery of tests (National Institutes of Health Stroke Scale, modified Rankin scale, Barthel Index, Fugl-Meyer Assessment, Functional Ambulation Categories, Medical Research Council scale, Chedoke Arm and Hand Activity Inventory, and the 10-m walk test) before IRT and at 1- and 3-month follow-ups. The secondary outcome was to evaluate the use of these MMPs as biomarkers as predictors of patient's outcome. RESULTS: MMP levels remained stable during the study period and were similar to those in the healthy volunteer group. However, baseline MMP12 and MMP13 levels were strongly associated with stroke severity and were found to be elevated in those patients with the poorest outcomes. Interestingly, plasma MMP3 was independent of baseline stroke characteristics but was found to be increased in patients with better motor/functional recovery and in patients with larger improvements during rehabilitation. CONCLUSIONS: MMPs might act as biologic markers of recovery during rehabilitation therapy related to their roles in both injury and tissue remodeling. Future confirmatory investigations in multicenter studies are warranted by our data.


Assuntos
Metaloproteinases da Matriz/metabolismo , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/fisiopatologia , Idoso , Biomarcadores , Feminino , Humanos , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinases da Matriz/sangue , Pessoa de Meia-Idade , Modalidades de Fisioterapia , Estudos Prospectivos , Recuperação de Função Fisiológica , Fatores de Risco , Índice de Gravidade de Doença
2.
Front Neurol ; 12: 767484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899582

RESUMO

Background: Rehabilitation is still the only treatment available to improve functional status after the acute phase of stroke. Most clinical guidelines highlight the need to design rehabilitation treatments considering starting time, intensity, and frequency, according to the tolerance of the patient. However, there are no homogeneous protocols and the biological effects are under investigation. Objective: To investigate the impact of rehabilitation intensity (hours) after stroke on functional improvement and serum angiogenin (ANG) in a 6-month follow-up study. Methods: A prospective, observational, longitudinal, and multicenter study with three cohorts: strokes in intensive rehabilitation therapy (IRT, minimum 15 h/week) vs. conventional therapy (NO-IRT, <15 h/week), and controls subjects (without known neurological, malignant, or inflammatory diseases). A total of seven centers participated, with functional evaluations and blood sampling during follow-up. The final cohort includes 62 strokes and 43 controls with demographic, clinical, blood samples, and exhaustive functional monitoring. Results: The median (IQR) number of weekly hours of therapy was different: IRT 15 (15-16) vs. NO-IRT 7.5 (5-9), p < 0.01, with progressive and significant improvements in both groups. However, IRT patients showed earlier improvements (within 1 month) on several scales (CAHAI, FMA, and FAC; p < 0.001) and the earliest community ambulation achievements (0.89 m/s at 3 months). There was a significant difference in ANG temporal profile between the IRT and NO-IRT groups (p < 0.01). Additionally, ANG was elevated at 1 month only in the IRT group (p < 0.05) whereas it decreased in the NO-IRT group (p < 0.05). Conclusions: Our results suggest an association of rehabilitation intensity with early functional improvements, and connect the rehabilitation process with blood biomarkers.

3.
Front Neurol ; 9: 508, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008694

RESUMO

Background: Rehabilitation therapy is the only available treatment for stroke survivors presenting neurological deficits; however, the underlying molecules and mechanisms associated with functional/motor improvement during rehabilitation are poorly understood. Objective: Our aim is to study the modulation of angiogenin and endothelial progenitor cells (EPCs) as repair-associated factors in a cohort of stroke patients and mouse models of rehabilitation after cerebral ischemia. Methods: The clinical study included 18 ischemic strokes admitted to an intensive rehabilitation therapy (IRT) unit, 18 non-ischemic controls and brain samples from three deceased patients. Angiogenin and EPCs were measured in blood obtained before and up to 6 months after IRT together with an extensive evaluation of the motor/functional status. In parallel, C57BL/6 mice underwent middle cerebral artery occlusion, and the pasta matrix reaching-task or treadmill exercises were used as rehabilitation models. Angiogenin RNA expression was measured after 2 or 12 days of treatment together with cell counts from EPCs cultures. Results: Brain angiogenin was identified in both human and mouse tissue, whereas serum levels increased after 1 month of IRT in association with motor/functional improvement. EPC populations were increased after stroke and remained elevated during follow-up after IRT. The mouse model of rehabilitation by the task-specific pasta matrix exercise increased the number of EPCs at 2 days and increased angiogenin expression after 12 days of rehabilitation. Conclusions: Angiogenin and EPCs are modulated by rehabilitation after cerebral ischemia, suggesting that both angiogenin and EPCs could serve as biomarkers of improvement during rehabilitation or future therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA