Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 172(4): 784-796.e18, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29358051

RESUMO

Mammalian barrier surfaces are constitutively colonized by numerous microorganisms. We explored how the microbiota was sensed by the immune system and the defining properties of such responses. Here, we show that a skin commensal can induce T cell responses in a manner that is restricted to non-classical MHC class I molecules. These responses are uncoupled from inflammation and highly distinct from pathogen-induced cells. Commensal-specific T cells express a defined gene signature that is characterized by expression of effector genes together with immunoregulatory and tissue-repair signatures. As such, non-classical MHCI-restricted commensal-specific immune responses not only promoted protection to pathogens, but also accelerated skin wound closure. Thus, the microbiota can induce a highly physiological and pleiotropic form of adaptive immunity that couples antimicrobial function with tissue repair. Our work also reveals that non-classical MHC class I molecules, an evolutionarily ancient arm of the immune system, can promote homeostatic immunity to the microbiota.


Assuntos
Imunidade Adaptativa , Bactérias/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Microbiota/imunologia , Pele/imunologia , Linfócitos T/imunologia , Animais , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Camundongos , Camundongos Transgênicos
2.
Cell ; 165(4): 854-66, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153496

RESUMO

Biogeography and individuality shape the structural and functional composition of the human skin microbiome. To explore these factors' contribution to skin microbial community stability, we generated metagenomic sequence data from longitudinal samples collected over months and years. Analyzing these samples using a multi-kingdom, reference-based approach, we found that despite the skin's exposure to the external environment, its bacterial, fungal, and viral communities were largely stable over time. Site, individuality, and phylogeny were all determinants of stability. Foot sites exhibited the most variability; individuals differed in stability; and transience was a particular characteristic of eukaryotic viruses, which showed little site-specificity in colonization. Strain and single-nucleotide variant-level analysis showed that individuals maintain, rather than reacquire, prevalent microbes from the environment. Longitudinal stability of skin microbial communities generates hypotheses about colonization resistance and empowers clinical studies exploring alterations observed in disease states.


Assuntos
Bactérias/classificação , Fungos/classificação , Microbiota , Pele/microbiologia , Vírus/classificação , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Vírus de DNA/isolamento & purificação , Fungos/isolamento & purificação , Fungos/fisiologia , Homeostase , Humanos , Propionibacterium acnes/isolamento & purificação , Fenômenos Fisiológicos da Pele , Simbiose , Fenômenos Fisiológicos Virais , Vírus/isolamento & purificação
3.
Cell ; 163(2): 354-66, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26451485

RESUMO

Infections have been proposed as initiating factors for inflammatory disorders; however, identifying associations between defined infectious agents and the initiation of chronic disease has remained elusive. Here, we report that a single acute infection can have dramatic and long-term consequences for tissue-specific immunity. Following clearance of Yersinia pseudotuberculosis, sustained inflammation and associated lymphatic leakage in the mesenteric adipose tissue deviates migratory dendritic cells to the adipose compartment, thereby preventing their accumulation in the mesenteric lymph node. As a consequence, canonical mucosal immune functions, including tolerance and protective immunity, are persistently compromised. Post-resolution of infection, signals derived from the microbiota maintain inflammatory mesentery remodeling and consequently, transient ablation of the microbiota restores mucosal immunity. Our results indicate that persistent disruption of communication between tissues and the immune system following clearance of an acute infection represents an inflection point beyond which tissue homeostasis and immunity is compromised for the long-term. VIDEO ABSTRACT.


Assuntos
Microbioma Gastrointestinal , Doenças do Sistema Imunitário/microbiologia , Doenças do Sistema Imunitário/patologia , Doenças Linfáticas/patologia , Infecções por Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/fisiologia , Movimento Celular , Doença Crônica , Células Dendríticas/patologia , Feminino , Humanos , Doenças Linfáticas/microbiologia , Tecido Linfoide/imunologia , Tecido Linfoide/patologia , Masculino , Mesentério/imunologia , Mesentério/patologia , Organismos Livres de Patógenos Específicos , Infecções por Yersinia pseudotuberculosis/patologia
4.
Immunity ; 47(6): 1154-1168.e6, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29221731

RESUMO

White adipose tissue bridges body organs and plays a fundamental role in host metabolism. To what extent adipose tissue also contributes to immune surveillance and long-term protective defense remains largely unknown. Here, we have shown that at steady state, white adipose tissue contained abundant memory lymphocyte populations. After infection, white adipose tissue accumulated large numbers of pathogen-specific memory T cells, including tissue-resident cells. Memory T cells in white adipose tissue expressed a distinct metabolic profile, and white adipose tissue from previously infected mice was sufficient to protect uninfected mice from lethal pathogen challenge. Induction of recall responses within white adipose tissue was associated with the collapse of lipid metabolism in favor of antimicrobial responses. Our results suggest that white adipose tissue represents a memory T cell reservoir that provides potent and rapid effector memory responses, positioning this compartment as a potential major contributor to immunological memory.


Assuntos
Tecido Adiposo Branco/transplante , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Toxoplasmose/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Tecido Adiposo Branco/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD4-Positivos/parasitologia , Linfócitos T CD8-Positivos/microbiologia , Linfócitos T CD8-Positivos/parasitologia , Expressão Gênica , Genes Reporter , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-5/genética , Interleucina-5/imunologia , Metabolismo dos Lipídeos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sobrevida , Transplante de Tecidos , Toxoplasma/imunologia , Toxoplasmose/genética , Toxoplasmose/mortalidade , Toxoplasmose/parasitologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/microbiologia , Infecções por Yersinia pseudotuberculosis/mortalidade
5.
Immunity ; 42(6): 1130-42, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26070484

RESUMO

Tissue-infiltrating Ly6C(hi) monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DCs) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals after tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function.


Assuntos
Células da Medula Óssea/imunologia , Células Dendríticas/imunologia , Mucosa Intestinal/imunologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Antígenos Ly/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células da Medula Óssea/parasitologia , Diferenciação Celular , Células Cultivadas , Interferon gama/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Mucosa Intestinal/parasitologia , Células Matadoras Naturais/parasitologia , Leucócitos Mononucleares/parasitologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Imunológicos , Especificidade de Órgãos/imunologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
6.
Nature ; 520(7545): 104-8, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25539086

RESUMO

The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A(+) CD8(+) T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Pele/imunologia , Pele/microbiologia , Simbiose/imunologia , Animais , Antígenos de Bactérias/imunologia , Linfócitos T CD8-Positivos/citologia , Células Dendríticas/citologia , Humanos , Imunidade Inata/imunologia , Interleucina-17/imunologia , Células de Langerhans/citologia , Células de Langerhans/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Primatas , Pele/citologia , Staphylococcus epidermidis/imunologia
7.
Nature ; 514(7520): 59-64, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25279917

RESUMO

The varied topography of human skin offers a unique opportunity to study how the body's microenvironments influence the functional and taxonomic composition of microbial communities. Phylogenetic marker gene-based studies have identified many bacteria and fungi that colonize distinct skin niches. Here metagenomic analyses of diverse body sites in healthy humans demonstrate that local biogeography and strong individuality define the skin microbiome. We developed a relational analysis of bacterial, fungal and viral communities, which showed not only site specificity but also individual signatures. We further identified strain-level variation of dominant species as heterogeneous and multiphyletic. Reference-free analyses captured the uncharacterized metagenome through the development of a multi-kingdom gene catalogue, which was used to uncover genetic signatures of species lacking reference genomes. This work is foundational for human disease studies investigating inter-kingdom interactions, metabolic changes and strain tracking, and defines the dual influence of biogeography and individuality on microbial composition and function.


Assuntos
Metagenoma , Pele/microbiologia , Pele/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Feminino , Genoma Bacteriano/genética , Genoma Fúngico/genética , Genoma Viral/genética , Genômica , Voluntários Saudáveis , Humanos , Masculino , Metagenoma/genética , Filogenia , Propionibacterium acnes/genética , Propionibacterium acnes/isolamento & purificação , Propionibacterium acnes/virologia , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/isolamento & purificação , Staphylococcus epidermidis/virologia , Simbiose
8.
BMC Bioinformatics ; 15: 262, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25091138

RESUMO

BACKGROUND: The use of sequencing technologies to investigate the microbiome of a sample can positively impact patient healthcare by providing therapeutic targets for personalized disease treatment. However, these samples contain genomic sequences from various sources that complicate the identification of pathogens. RESULTS: Here we present Clinical PathoScope, a pipeline to rapidly and accurately remove host contamination, isolate microbial reads, and identify potential disease-causing pathogens. We have accomplished three essential tasks in the development of Clinical PathoScope. First, we developed an optimized framework for pathogen identification using a computational subtraction methodology in concordance with read trimming and ambiguous read reassignment. Second, we have demonstrated the ability of our approach to identify multiple pathogens in a single clinical sample, accurately identify pathogens at the subspecies level, and determine the nearest phylogenetic neighbor of novel or highly mutated pathogens using real clinical sequencing data. Finally, we have shown that Clinical PathoScope outperforms previously published pathogen identification methods with regard to computational speed, sensitivity, and specificity. CONCLUSIONS: Clinical PathoScope is the only pathogen identification method currently available that can identify multiple pathogens from mixed samples and distinguish between very closely related species and strains in samples with very few reads per pathogen. Furthermore, Clinical PathoScope does not rely on genome assembly and thus can more rapidly complete the analysis of a clinical sample when compared with current assembly-based methods. Clinical PathoScope is freely available at: http://sourceforge.net/projects/pathoscope/.


Assuntos
Biologia Computacional/métodos , Técnicas Microbiológicas/métodos , Alinhamento de Sequência/métodos , Análise de Sequência/métodos , Sequência de Bases , Interações Hospedeiro-Patógeno , Humanos , Filogenia , Especificidade da Espécie , Fatores de Tempo
9.
BMC Genomics ; 15: 71, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24467778

RESUMO

BACKGROUND: The lined sea anemone Edwardsiella lineata is an informative model system for evolutionary-developmental studies of parasitism. In this species, it is possible to compare alternate developmental pathways leading from a larva to either a free-living polyp or a vermiform parasite that inhabits the mesoglea of a ctenophore host. Additionally, E. lineata is confamilial with the model cnidarian Nematostella vectensis, providing an opportunity for comparative genomic, molecular and organismal studies. DESCRIPTION: We generated a reference transcriptome for E. lineata via high-throughput sequencing of RNA isolated from five developmental stages (parasite; parasite-to-larva transition; larva; larva-to-adult transition; adult). The transcriptome comprises 90,440 contigs assembled from >15 billion nucleotides of DNA sequence. Using a molecular clock approach, we estimated the divergence between E. lineata and N. vectensis at 215-364 million years ago. Based on gene ontology and metabolic pathway analyses and gene family surveys (bHLH-PAS, deiodinases, Fox genes, LIM homeodomains, minicollagens, nuclear receptors, Sox genes, and Wnts), the transcriptome of E. lineata is comparable in depth and completeness to N. vectensis. Analyses of protein motifs and revealed extensive conservation between the proteins of these two edwardsiid anemones, although we show the NF-κB protein of E. lineata reflects the ancestral structure, while the NF-κB protein of N. vectensis has undergone a split that separates the DNA-binding domain from the inhibitory domain. All contigs have been deposited in a public database (EdwardsiellaBase), where they may be searched according to contig ID, gene ontology, protein family motif (Pfam), enzyme commission number, and BLAST. The alignment of the raw reads to the contigs can also be visualized via JBrowse. CONCLUSIONS: The transcriptomic data and database described here provide a platform for studying the evolutionary developmental genomics of a derived parasitic life cycle. In addition, these data from E. lineata will aid in the interpretation of evolutionary novelties in gene sequence or structure that have been reported for the model cnidarian N. vectensis (e.g., the split NF-κB locus). Finally, we include custom computational tools to facilitate the annotation of a transcriptome based on high-throughput sequencing data obtained from a "non-model system."


Assuntos
Bases de Dados Genéticas , Genoma , Anêmonas-do-Mar/genética , Transcriptoma , Animais , Cnidários/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Estágios do Ciclo de Vida/genética , Redes e Vias Metabólicas/genética , NF-kappa B/genética , Filogenia , RNA Ribossômico 18S/classificação , RNA Ribossômico 18S/genética , Anêmonas-do-Mar/classificação , Anêmonas-do-Mar/crescimento & desenvolvimento , Proteínas Wnt/química , Proteínas Wnt/classificação , Proteínas Wnt/genética
10.
J Crohns Colitis ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267224

RESUMO

BACKGROUND AND AIMS: The goal was to identify microbial drivers of IBD, by investigating mucosal-associated bacteria and their detrimental products in IBD patients. METHODS: We directly cultured bacterial communities from mucosal biopsies from pediatric gastrointestinal patients and examined for pathogenicity-associated traits. Upon identifying C. perfringens as toxigenic bacteria present in mucosal biopsies, we isolated strains and further characterized toxicity and prevalence. RESULTS: Mucosal biopsy microbial composition differed from corresponding stool samples. C. perfringens was present in 8 of 9 patients' mucosal biopsies, correlating with hemolytic activity, while not in all corresponding stool samples. Large IBD datasets showed higher C. perfringens prevalence in stool samples of IBD adults (18.7-27.1%) versus healthy (5.1%). In vitro, C. perfringens supernatants were toxic to cell types beneath the intestinal epithelial barrier, including endothelial, neuroblasts, and neutrophils, while impact on epithelial cells was less pronounced, suggesting C. perfringens may be damaging particularly when barrier integrity is compromised. Further characterization using purified toxins and genetic insertion mutants confirmed PFO toxin was sufficient for toxicity. Toxin RNA signatures were found in the original patient biopsies by PCR, suggesting intestinal production. C. perfringens supernatants also induced activation of neuroblast and dorsal root ganglion neurons in vitro, suggesting C. perfringens in inflamed mucosal tissue may directly contribute to abdominal pain, a frequent IBD symptom. CONCLUSIONS: Gastrointestinal carriage of certain toxigenic C. perfringens may have an important pathogenic impact on IBD patients. These findings support routine monitoring of C. perfringens and PFO toxins and potential treatment in patients.

11.
Cancer Cell ; 42(1): 16-34, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38157864

RESUMO

Over the last decade, the composition of the gut microbiota has been found to correlate with the outcomes of cancer patients treated with immunotherapy. Accumulating evidence points to the various mechanisms by which intestinal bacteria act on distal tumors and how to harness this complex ecosystem to circumvent primary resistance to immune checkpoint inhibitors. Here, we review the state of the microbiota field in the context of melanoma, the recent breakthroughs in defining microbial modes of action, and how to modulate the microbiota to enhance response to cancer immunotherapy. The host-microbe interaction may be deciphered by the use of "omics" technologies, and will guide patient stratification and the development of microbiota-centered interventions. Efforts needed to advance the field and current gaps of knowledge are also discussed.


Assuntos
Microbioma Gastrointestinal , Melanoma , Microbiota , Neoplasias , Humanos , Melanoma/terapia , Neoplasias/terapia , Imunoterapia , Interações entre Hospedeiro e Microrganismos
13.
Cell Rep Med ; 4(2): 100920, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36706753

RESUMO

While the association between colorectal cancer (CRC) features and Fusobacterium has been extensively studied, less is known of other intratumoral bacteria. Here, we leverage whole transcriptomes from 807 CRC samples to dually characterize tumor gene expression and 74 intratumoral bacteria. Seventeen of these species, including 4 Fusobacterium spp., are classified as orally derived and are enriched among right-sided, microsatellite instability-high (MSI-H), and BRAF-mutant tumors. Across consensus molecular subtypes (CMSs), integration of Fusobacterium animalis (Fa) presence and tumor expression reveals that Fa has the most significant associations in mesenchymal CMS4 tumors despite a lower prevalence than in immune CMS1. Within CMS4, the prevalence of Fa is uniquely associated with collagen- and immune-related pathways. Additional Fa pangenome analysis reveals that stress response genes and the adhesion FadA are commonly expressed intratumorally. Overall, this study identifies oral-derived bacteria as enriched in inflamed tumors, and the associations of bacteria and tumor expression are context and species specific.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/genética , Fusobacterium/genética , Instabilidade de Microssatélites , Transcriptoma
14.
Clin Cancer Res ; 27(15): 4147-4159, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766813

RESUMO

Today, there is a huge effort to develop cancer immunotherapeutics capable of combating cancer cells as well as the biological environment in which they can grow, adapt, and survive. For such treatments to benefit more patients, there is a great need to dissect the complex interplays between tumor cells and the host's immune system. Monitoring mechanisms of resistance to immunotherapeutics can delineate the evolution of key players capable of driving an efficacious antitumor immune response. In doing so, simultaneous and systematic interrogation of multiple biomarkers beyond single biomarker approaches needs to be undertaken. Zooming into cell-to-cell interactions using technological advancements with unprecedented cellular resolution such as single-cell spatial transcriptomics, advanced tissue histology approaches, and new molecular immune profiling tools promises to provide a unique level of molecular granularity of the tumor environment and may support better decision-making during drug development. This review will focus on how such technological tools are applied in clinical settings, to inform the underlying tumor-immune biology of patients and offer a deeper understanding of cancer immune responsiveness to immuno-oncology treatments.


Assuntos
Biomarcadores Tumorais , Neoplasias/etiologia , Neoplasias/imunologia , Neoplasias/patologia , Humanos
15.
Elife ; 102021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33769280

RESUMO

Over-accumulation of oxalate in humans may lead to nephrolithiasis and nephrocalcinosis. Humans lack endogenous oxalate degradation pathways (ODP), but intestinal microbes can degrade oxalate using multiple ODPs and protect against its absorption. The exact oxalate-degrading taxa in the human microbiota and their ODP have not been described. We leverage multi-omics data (>3000 samples from >1000 subjects) to show that the human microbiota primarily uses the type II ODP, rather than type I. Furthermore, among the diverse ODP-encoding microbes, an oxalate autotroph, Oxalobacter formigenes, dominates this function transcriptionally. Patients with inflammatory bowel disease (IBD) frequently suffer from disrupted oxalate homeostasis and calcium oxalate nephrolithiasis. We show that the enteric oxalate level is elevated in IBD patients, with highest levels in Crohn's disease (CD) patients with both ileal and colonic involvement consistent with known nephrolithiasis risk. We show that the microbiota ODP expression is reduced in IBD patients, which may contribute to the disrupted oxalate homeostasis. The specific changes in ODP expression by several important taxa suggest that they play distinct roles in IBD-induced nephrolithiasis risk. Lastly, we colonize mice that are maintained in the gnotobiotic facility with O. formigenes, using either a laboratory isolate or an isolate we cultured from human stools, and observed a significant reduction in host fecal and urine oxalate levels, supporting our in silico prediction of the importance of the microbiome, particularly O. formigenes in host oxalate homeostasis.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/metabolismo , Oxalatos/metabolismo , Oxalobacter formigenes/fisiologia , Animais , Fezes/química , Homeostase , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxalatos/urina
16.
J Exp Med ; 218(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33175106

RESUMO

As microbial therapeutics are increasingly being tested in diverse patient populations, it is essential to understand the host and environmental factors influencing the microbiome. Through analysis of 1,359 gut microbiome samples from 946 healthy donors of the Milieu Intérieur cohort, we detail how microbiome composition is associated with host factors, lifestyle parameters, and disease states. Using a genome-based taxonomy, we found biological sex was the strongest driver of community composition. Additionally, bacterial populations shift across decades of life (age 20-69), with Bacteroidota species consistently increased with age while Actinobacteriota species, including Bifidobacterium, decreased. Longitudinal sampling revealed that short-term stability exceeds interindividual differences. By accounting for these factors, we defined global shifts in the microbiomes of patients with non-gastrointestinal tumors compared with healthy donors. Together, these results demonstrated that the microbiome displays predictable variations as a function of sex, age, and disease state. These variations must be considered when designing microbiome-targeted therapies or interpreting differences thought to be linked to pathophysiology or therapeutic response.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Microbioma Gastrointestinal , Neoplasias/microbiologia , Adulto , Idoso , Bifidobacterium/classificação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Sci Transl Med ; 12(570)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208503

RESUMO

The composition of the skin microbiota varies widely among individuals when sampled at the same body site. A key question is which molecular factors determine strain-level variability within sub-ecosystems of the skin microbiota. Here, we used a genomics-guided approach to identify an antibacterial biosynthetic gene cluster in Cutibacterium acnes (formerly Propionibacterium acnes), a human skin commensal bacterium that is widely distributed across individuals and skin sites. Experimental characterization of this biosynthetic gene cluster resulted in identification of a new thiopeptide antibiotic, cutimycin. Analysis of individual human skin hair follicles revealed that cutimycin contributed to the ecology of the skin hair follicle microbiota and helped to reduce colonization of skin hair follicles by Staphylococcus species.


Assuntos
Folículo Piloso , Microbiota , Antibacterianos/farmacologia , Humanos , Propionibacterium acnes , Pele
18.
Microbiome ; 7(1): 130, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519223

RESUMO

BACKGROUND: The gut microbiome is an important determinant of human health. Its composition has been shown to be influenced by multiple environmental factors and likely by host genetic variation. In the framework of the Milieu Intérieur Consortium, a total of 1000 healthy individuals of western European ancestry, with a 1:1 sex ratio and evenly stratified across five decades of life (age 20-69), were recruited. We generated 16S ribosomal RNA profiles from stool samples for 858 participants. We investigated genetic and non-genetic factors that contribute to individual differences in fecal microbiome composition. RESULTS: Among 110 demographic, clinical, and environmental factors, 11 were identified as significantly correlated with α-diversity, ß-diversity, or abundance of specific microbial communities in multivariable models. Age and blood alanine aminotransferase levels showed the strongest associations with microbiome diversity. In total, all non-genetic factors explained 16.4% of the variance. We then searched for associations between > 5 million single nucleotide polymorphisms and the same indicators of fecal microbiome diversity, including the significant non-genetic factors as covariates. No genome-wide significant associations were identified after correction for multiple testing. A small fraction of previously reported associations between human genetic variants and specific taxa could be replicated in our cohort, while no replication was observed for any of the diversity metrics. CONCLUSION: In a well-characterized cohort of healthy individuals, we identified several non-genetic variables associated with fecal microbiome diversity. In contrast, host genetics only had a negligible influence. Demographic and environmental factors are thus the main contributors to fecal microbiome composition in healthy individuals. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT01699893.


Assuntos
Bactérias/classificação , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Adulto , Idoso , Bactérias/isolamento & purificação , Estudos de Coortes , Demografia , Meio Ambiente , Feminino , Voluntários Saudáveis , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Science ; 363(6422)2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30523076

RESUMO

Barrier tissues are primary targets of environmental stressors and are home to the largest number of antigen-experienced lymphocytes in the body, including commensal-specific T cells. We found that skin-resident commensal-specific T cells harbor a paradoxical program characterized by a type 17 program associated with a poised type 2 state. Thus, in the context of injury and exposure to inflammatory mediators such as interleukin-18, these cells rapidly release type 2 cytokines, thereby acquiring contextual functions. Such acquisition of a type 2 effector program promotes tissue repair. Aberrant type 2 responses can also be unleashed in the context of local defects in immunoregulation. Thus, commensal-specific T cells co-opt tissue residency and cell-intrinsic flexibility as a means to promote both local immunity and tissue adaptation to injury.


Assuntos
Plasticidade Celular , Pele/lesões , Pele/microbiologia , Simbiose , Células Th17/imunologia , Células Th17/microbiologia , Ferimentos e Lesões/imunologia , Alarminas/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Candida albicans , Feminino , Fator de Transcrição GATA3/metabolismo , Interleucinas/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Análise de Sequência de RNA , Staphylococcus epidermidis , Transcriptoma
20.
Nat Rev Microbiol ; 16(3): 143-155, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29332945

RESUMO

Functioning as the exterior interface of the human body with the environment, skin acts as a physical barrier to prevent the invasion of foreign pathogens while providing a home to the commensal microbiota. The harsh physical landscape of skin, particularly the desiccated, nutrient-poor, acidic environment, also contributes to the adversity that pathogens face when colonizing human skin. Despite this, the skin is colonized by a diverse microbiota. In this Review, we describe amplicon and shotgun metagenomic DNA sequencing studies that have been used to assess the taxonomic diversity of microorganisms that are associated with skin from the kingdom to the strain level. We discuss recent insights into skin microbial communities, including their composition in health and disease, the dynamics between species and interactions with the immune system, with a focus on Propionibacterium acnes, Staphylococcus epidermidis and Staphylococcus aureus.


Assuntos
Bactérias/classificação , Microbiota , Pele/microbiologia , Fenômenos Fisiológicos Bacterianos , Humanos , Dermatopatias Bacterianas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA