Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 257: 109836, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37951516

RESUMO

BACKGROUND: COVID-19 causes consequences such as imbalance of the immune system and thrombotic events. During the infection process, NETs in excess induce a pro-inflammatory response and disseminated intravascular coagulation. We evaluated the role of enoxaparin as a potential inhibitor of NETs. METHODS: K18-hACE2 animals infected with the SARS-CoV-2 virus and a group of 23 individuals admitted to the hospital with COVID-19 treated with enoxaparin or without treatment and controls without the disease were included. RESULTS: Enoxaparin decreased the levels of NETs, reduced the signs of the disease and mitigated lung damage in the animals infected with SARS-CoV-2. These effects were partially associated with prevention of SARS-CoV-2 entry and NETs synthesis. Clinical data revealed that treatment with enoxaparin decreased the levels of inflammatory markers, the levels of NETs in isolated neutrophils and the organ dysfunction. CONCLUSION: This study provides evidence for the beneficial effects of enoxaparin in COVID-19 in addition to its anticoagulant role.


Assuntos
COVID-19 , Armadilhas Extracelulares , Humanos , Animais , Neutrófilos , Enoxaparina/farmacologia , SARS-CoV-2
2.
Respir Res ; 24(1): 66, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864506

RESUMO

BACKGROUND: COVID-19 is characterized by severe acute lung injury, which is associated with neutrophil infiltration and the release of neutrophil extracellular traps (NETs). COVID-19 treatment options are scarce. Previous work has shown an increase in NETs release in the lung and plasma of COVID-19 patients suggesting that drugs that prevent NETs formation or release could be potential therapeutic approaches for COVID-19 treatment. METHODS: Here, we report the efficacy of NET-degrading DNase I treatment in a murine model of COVID-19. SARS-CoV-2-infected K18-hACE2 mice were performed for clinical sickness scores and lung pathology. Moreover, the levels of NETs were assessed and lung injuries were by histopathology and TUNEL assay. Finally, the injury in the heart and kidney was assessed by histopathology and biochemical-specific markers. RESULTS: DNase I decreased detectable levels of NETs, improved clinical disease, and reduced lung, heart, and kidney injuries in SARS-CoV-2-infected K18-hACE2 mice. Furthermore, our findings indicate a potentially deleterious role for NETs lung tissue in vivo and lung epithelial (A549) cells in vitro, which might explain part of the pathophysiology of severe COVID-19. This deleterious effect was diminished by the treatment with DNase I. CONCLUSIONS: Together, our results support the role of NETs in COVID-19 immunopathology and highlight NETs disruption pharmacological approaches as a potential strategy to ameliorate COVID-19 clinical outcomes.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Armadilhas Extracelulares , Animais , Humanos , Camundongos , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Modelos Animais de Doenças , Neutrófilos , Desoxirribonuclease I/farmacologia , Desoxirribonuclease I/uso terapêutico
3.
Exp Parasitol ; 210: 107830, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31917970

RESUMO

Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi, which is transmitted by insects of the family Reduviidae. Since conventional treatments with nitroheterocyclic drugs show serious adverse reactions and have questionable efficiency, different research groups have investigated polypeptide-based approaches to interfere with the parasite cell cycle in other Trypanosomatids. These strategies are supported by the fact that surface players are candidates to develop surface ligands that impair function since they may act as virulence factors. In this study, we used a phage display approach to identify peptides from one library-LX8CX8 (17 aa) (where X corresponds to any amino acid). After testing different biopanning conditions using live or fixed epimastigotes, 10 clones were sequenced that encoded the same peptide, named here as EPI18. The bacteriophage expressing EPI18 binds to epimastigotes from distinct strains of T. cruzi. To confirm these results, this peptide was synthetized, biotinylated, and assayed using flow cytometry and confocal microscopy analyses. These assays confirmed the specificity of the binding capacity of EPI18 toward epimastigote surfaces. Our findings suggest that EPI18 may have potential biotechnological applications that include peptide-based strategies to control parasite transmission.


Assuntos
Doença de Chagas/tratamento farmacológico , Peptídeos/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Sequência de Aminoácidos , Bacteriófagos/isolamento & purificação , Bioprospecção , Biotinilação , Doença de Chagas/parasitologia , Doença de Chagas/prevenção & controle , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Temperatura , Trypanosoma cruzi/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA