Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 580(7805): 597-601, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161364

RESUMO

Ultrahot giant exoplanets receive thousands of times Earth's insolation1,2. Their high-temperature atmospheres (greater than 2,000 kelvin) are ideal laboratories for studying extreme planetary climates and chemistry3-5. Daysides are predicted to be cloud-free, dominated by atomic species6 and much hotter than nightsides5,7,8. Atoms are expected to recombine into molecules over the nightside9, resulting in different day and night chemistries. Although metallic elements and a large temperature contrast have been observed10-14, no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night ('evening') and night-to-day ('morning') terminators could, however, be revealed as an asymmetric absorption signature during transit4,7,15. Here we report the detection of an asymmetric atmospheric signature in the ultrahot exoplanet WASP-76b. We spectrally and temporally resolve this signature using a combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by -11 ± 0.7 kilometres per second on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside16. In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. We conclude that iron must therefore condense during its journey across the nightside.

2.
Phys Rev Lett ; 123(6): 061101, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491188

RESUMO

Raman scattering enables unforeseen uses for the laser guide-star system of the Very Large Telescope. Here, we present the observation of one up-link sodium laser beam acquired with the ESPRESSO spectrograph at a resolution λ/Δλ∼140 000. In 900 s on source, we detect the pure rotational Raman lines of ^{16}O_{2}, ^{14}N_{2}, and ^{14}N^{15}N (tentatively) up to rotational quantum numbers J of 27, 24, and 9, respectively. We detect the ^{16}O_{2} fine-structure lines induced by the interaction of the electronic spin S and end-over-end rotational angular momentum N in the electronic ground state of this molecule up to N=9. The same spectrum also reveals the ν_{1←0} rotational-vibrational Q-branch for ^{16}O_{2} and ^{14}N_{2}. These observations demonstrate the potential of using laser guide-star systems as accurate calibration sources for characterizing new astronomical spectrographs.

3.
Int J Occup Saf Ergon ; : 1-8, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028148

RESUMO

Objectives. The main objective of this study was to evaluate mean propulsive velocity (MPV), mean propulsive force (MPF) and mean propulsive power (MPP) in elite police officers under LOADED and UNLOADED conditions. The study also investigated the association of body composition and strength levels under the same load conditions. Methods. Twenty-one men from an elite unit in Brazil participated in the study, performing Smith machine half squats and an agility test. Dual energy X-ray absorptiometry measured body composition; a linear encoder measured MPV, MPF and MPP during the half squats; and a manual chronometer registered agility test performance. Results. The results showed that wearing and carrying occupational loads did not alter the squat exercise's MPP, MPV and MPF but reduced the performance of relative MPP and agility (p < 0.05). The results also showed that MPP had a higher association with force (i.e., MPF and one-repetition maximum [1RM]) than velocity (i.e., MPV and agility) under the LOADED condition (p < 0.05). Among the body composition variables, only lean body mass was associated with MPP under the LOADED condition (p < 0.05). Conclusion. These findings suggest that load carriage does not reduce absolute mechanical power output, but reduces the relative MPP and agility in military police officers.

4.
Sci Rep ; 13(1): 8633, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244944

RESUMO

Aluminium (Al)-rich palaeosols-i.e., palaeobauxite deposits-should have formed in karst depressions in carbonate sequences as a result of acidic solutions from oxidative weathering of sulfide minerals during the Great Oxidation Event (GOE), but no GOE-related karst-palaeobauxite deposits have so far been recorded. Here, we report results of in situ uranium-lead (U-Pb) dating of detrital zircon and spatially associated rutile from a metamorphosed Al-rich rock within a dolomite sequence in the Quadrilátero Ferrífero (QF) of Minas Gerais, Brazil, known as the Gandarela Formation. Rutile grains are highly enriched in thorium (Th = 3-46 ppm; Th/U ratio = 0.3-3.7) and yielded an isochron, lower-intercept age of ca. 2.12 Ga, which coincides with the final phase of the GOE-i.e., the Lomagundi event. The rutile age represents either authigenic growth of TiO2 enriched in Th, U and Pb during bauxite formation, or subsequent rutile crystallisation during metamorphic overprint. Both cases require an authigenic origin for the rutile. Its high Th contents can be used as a palaeoenvironmental indicator for decreased soil pH during the GOE. Our results also have implications for iron (Fe)-ore genesis in the QF. This study demonstrates that in situ U-Th-Pb-isotope analyses of rutile can place tight constraints on the age and nature of palaeosols.

5.
Appl Microbiol Biotechnol ; 93(6): 2633-43, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21894478

RESUMO

The effects of compost, nitrogen salts, and nitrogen-phosphorous-potassium (NPK) fertilizers on the methane oxidation potential (MOP) of landfill cover soil at various temperatures were assessed. For this, we used batch assays conducted at 5°C, 15°C, and 25°C with microcosms containing landfill cover soil slurries amended with these elements. Results indicated variable impacts dependent on the type of amendment and the incubation temperature. For a given incubation temperature, MOP varied from one compost to another and with the amount of compost added, except for the shrimp/peat compost. With this latter compost, independent of the amount, MOP values remained similar and were significantly higher than those obtained with other composts. Amendment with most of the tested nitrogen salts led to similar improvements in methanotrophic activity, except for urea. MOP with NPK fertilizer addition was amongst the highest in this study; the minimum value obtained with NPK (20-0-20) suggested the importance of P for methanotrophs. MOP generally increased with temperature, and nutrient limitation became less important at higher temperatures. Overall, at each of the three temperatures tested, MOP with NPK fertilizer amendments provided the best results and was comparable to those observed with the addition of the shrimp/peat compost. The results of this study provide the first evidence of the following: (1) compost addition to improve methanotrophic activity in a landfill cover soil should consider the amount and type of compost used and (2) the importance of using NPK fertilizers rather than nitrogen salts, in enhancing this activity, primarily at low temperatures. One can also consider the potential beneficial impact of adding these elements to enhance plant growth, which is an advantage for MOP.


Assuntos
Bactérias/metabolismo , Metano/metabolismo , Nitrogênio/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Fertilizantes/análise , Oxirredução , Potássio , Eliminação de Resíduos , Solo/análise , Temperatura
6.
Environ Technol ; : 1-14, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36274583

RESUMO

Lysimetry has been acknowledged in the literature as the most effective means of assessing deep percolation rates through landfill final covers. Designing lysimeters requires several tools, including thorough laboratory testing and numerical modelling. This paper focuses on a fundamental boundary condition, namely breakthrough suction, and how it affects lysimeter design. This study was triggered by a multi-year database of suction and seepage data collected from a large-scale lysimeter constructed at the St-Nicephore landfill, Quebec, Canada. Tensiometers were installed at several levels near and at the interface between the cover material and the drainage layer inside the lysimeter, and outflow was measured using tipping counters. Based on field results and an analysis thereof, different geometry scenarios were simulated with HYDRUS-2D, and it was observed that in lysimeters designed using the linear method, breakthrough suction at the lower boundary can result in a greater than 90% percolation performance. With climate change, lysimeter percolation rate estimates may also be affected by rainfall events of varying magnitudes. Lastly, we were able to assess the existing design procedures and suggest a simple and conservative approach.

7.
Sci Total Environ ; 851(Pt 2): 158351, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049680

RESUMO

Emissions from Canadian landfills account for 20 % of national greenhouse gas emissions, a portion of which occur as fugitive emissions. Depending on management factors, significant quantities of landfill gas are emitted during the operational phase and over several decades following landfill closure. Successful landfill reclamation developments depend on low-maintenance solutions to manage fugitive emissions. Designing passive methane oxidation biosystems (PMOBs) to complement landfill covers has become a promising complementary strategy. Achieving year-round methane oxidation in cold climates, requires specific conditions for survival of methanotrophic bacteria (responsible for methane oxidation), including optimal temperature, moisture and sufficient supply of O2 and CH4. The objective of this study was to design, construct and monitor a fully instrumented pilot-scale PMOB capable of abating fugitive methane emissions from a closed landfill in the city of Kitchener, Ontario, now a public park. Factors considered in the design include type of PMOB media, methane loading rates, hydraulic behaviour and ambient temperature. Methane oxidation efficiencies between 73 and 100 % were achieved during the monitoring period. The goal was to develop a long-term solution to mitigate fugitive methane emissions at this closed landfill. Successful mitigation will provide a low-maintenance, high impact technology that could be adopted by the municipality for abatement of CH4 emissions at other landfills under its management. The results will also be useful to landfill designers, operators, and regulatory bodies. Overall, the PMOB construction and monitoring results supported evidence that the designed PMOB was capable of abating most of the CH4 loading. The paper describes several steps taken to design, install and operate the PMOB.


Assuntos
Poluentes Atmosféricos , Gases de Efeito Estufa , Eliminação de Resíduos , Metano/análise , Eliminação de Resíduos/métodos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Instalações de Eliminação de Resíduos , Oxirredução , Ontário
8.
J Air Waste Manag Assoc ; 72(12): 1477-1488, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36121383

RESUMO

Lysimeters are considered the most appropriate instrument for assessing percolations rates through landfill final covers. Their design, however, must take into consideration the unsaturated nature of water seepage, otherwise they may act as a sink or cause flow avoidance. The aim of this study was to investigate whether using a simple approach to lysimeter design produces reliable seepage control data. Two different design methods were compared using a three-year field database of suction and seepage data collected from large-scale lysimeters installed at the St-Nicephore landfill in Canada. The first, or control, whose side walls were as high as the thickness of the cover material, was inspired from lysimeters installed during the Alternative Cover Assessment Program (ACAP; USA). The second lysimeter was designed based on the proposed simple design methodology, which focuses on the unsaturated flow and hydraulic properties of the materials to determine the optimal wall height. Analysis of the database did not show any indication of significant preferential flow, or alteration of the flow regime by the second lysimeter, which collected as much percolation as the control one (less than 5% difference). The linear method has not been tested for extreme climatic conditions and the wall heights calculated using this method may be very high when designed for very fine-grained soil covers.


Assuntos
Eliminação de Resíduos , Poluentes do Solo , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Solo , Poluição da Água , Poluentes do Solo/análise
9.
Artigo em Inglês | MEDLINE | ID: mdl-32899413

RESUMO

Background: Chronic low back pain (CLBP) is a serious problem in Military Police Officers (MPO), which accounts for up to 45% of the sick leave rates. It has been assumed that the strength and the endurance of trunk flexor and extensor muscles are CLPB key factors, but it is not known whether these attributes are related to pain intensity. It was aimed to determine whether the strength and endurance of trunk flexor and extensor muscles differ in MPO with no pain (CON; n = 24), moderate (MOD; n = 42), and severe (SEV; n = 37) nonspecific chronic low back pain (CLBP). Methods: The peak torque and endurance test of trunk flexor (PTF.BM-1) and extensor (PTE.BM-1) muscles were compared. A multiple regression analysis was used to identify pain intensity predictors in all groups (PAIN) and according to pain intensity (MOD and SEV). Results: The PTF.BM-1 was negatively related to pain and was a significant predictor, irrespective of pain intensity (PAIN). Conclusion: When pain intensity was considered the PTF.BM-1 and PTE.BM-1 explained the pain in the MOD, while the PTE.BM-1 and service time explained pain intensity in the SEV. Endurance of the flexor and extensor muscles was not related to pain intensity. These results indicated that training protocols must emphasize specific strengthening routines.


Assuntos
Dor Lombar , Militares , Resistência Física , Adulto , Antropometria , Humanos , Músculo Esquelético , Desempenho Físico Funcional , Polícia
10.
J Bras Nefrol ; 42(2 suppl 1): 18-21, 2020 Aug 26.
Artigo em Inglês, Português | MEDLINE | ID: mdl-32877494

RESUMO

Considering the new coronavirus epidemic (Covid-19), the Brazilian Society of Nephrology, represented by the Peritoneal Steering Committee, in agreement with the and the Dialysis Department, developed a series of recommendations for good clinical practices for peritoneal dialysis (PD) clinics, to be considered during the period of the Covid-19 epidemic. We aim to minimize the disease spread, protecting patients and staff, and ensuring the quality of the treatment provided and adequate follow-up for PD patients. The recommendations suggested at this moment must be adapted to each clinic's reality and the conditions of the structural and human resources, dependent on the adequate financial provision of the public health system for its full implementation.


Assuntos
Betacoronavirus , Infecções por Coronavirus/prevenção & controle , Falência Renal Crônica/terapia , Pandemias/prevenção & controle , Diálise Peritoneal/normas , Pneumonia Viral/prevenção & controle , Brasil , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Desinfecção/métodos , Desinfecção/normas , Humanos , Falência Renal Crônica/complicações , Máscaras , Nefrologia/normas , Doenças Profissionais/prevenção & controle , Equipe de Assistência ao Paciente , Educação de Pacientes como Assunto , Isolamento de Pacientes/métodos , Isolamento de Pacientes/normas , Diálise Peritoneal/instrumentação , Diálise Peritoneal/métodos , Equipamento de Proteção Individual , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , SARS-CoV-2 , Sociedades Médicas , Telemedicina/legislação & jurisprudência , Telemedicina/métodos , Telemedicina/normas , Unidade Hospitalar de Urologia/organização & administração , Unidade Hospitalar de Urologia/normas
11.
Sci Rep ; 9(1): 4570, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872681

RESUMO

Molybdenum (Mo) and its isotopes have been used to retrieve palaeoenvironmental information on the ocean-atmosphere system through geological time. Their application has so far been restricted to rocks least affected by severe metamorphism and deformation, which may erase or alter palaeoenvironmental signals. Environmental Mo-isotope signatures can be retrieved if the more manganese (Mn)-enriched rocks are isotopically depleted and the maximum range of δ98Mo values is close to the ~2.7‰ Mo-isotope fractionation known from Mo sorption onto Mn oxides at low temperature. Here, we show that the Morro da Mina Mn-ore deposit in Minas Gerais, Brazil, contains Mn-silicate-carbonate ore and associated graphitic schist that likely preserve δ98Mo of Palaeoproterozoic seawater, despite a metamorphic overprint of at least 600 °C. The extent of Mo-isotope fractionation between the Mn-silicate-carbonate ore and the graphitic schist is similar to modern Mn-oxide precipitates and seawater. Differences in δ98Mo signals are broadly reflected in cerium (Ce) anomalies, which suggest an oxic-anoxic-stratified Palaeoproterozoic ocean.

12.
J Environ Monit ; 10(11): 1326-36, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18974902

RESUMO

Gas movement through soils is important for ecosystems and engineering in many ways such as for microbial and plant respiration, passive methane oxidation in landfill covers and oxidation of mine residues. Diffusion is one of the most important gas movement processes and the determination of the diffusion coefficient is a crucial step in any study. Five laboratory methods used for measuring the relative gas diffusion coefficient (D(s)/D(o)) were compared using a loamy sand, a porous media commonly found in agricultural fields and in several engineered structures, such as in landfill final covers. In the absence of macropores, all methods gave rather similar values of D(s)/D(o). Methods allowing the study of microscale variability indicated that the presence of macropores highly influenced gas movement, thus the value of D(s)/D(o), which, near a macropore may be one order of magnitude higher than in regions without macropores. Repacked columns do not allow the study of heterogeneity in D(s)/D(o). Natural spatial variability in D(s)/D(o) due to water distribution and preferential pathways can only be studied in large systems, but these systems are difficult to handle. Advantages and disadvantages of each method are discussed.


Assuntos
Gases , Laboratórios , Solo , Difusão
13.
Waste Manag ; 28(1): 85-96, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17240131

RESUMO

Deinking by-products (DBP) have been used as alternative cover material for landfills and mine tailings. Since DBP is biodegradable because of its high cellulose and hemicellulose content, a laboratory experimental program was performed to monitor the evolution of biodegradation and changes in the physico-chemical and geotechnical properties of DBP samples submitted to accelerated biodegradation for 1460 days at 38 degrees C. The evolution of gas and leachate production was monitored in terms of both quality and quantity, which allowed for the calculation of mass loss with time. Under the conditions of the tests (no load applied), 19.6% of the mass was lost as gas, whereas 6.1% was leached out. The results show that biodegradation did not significantly alter the compaction behavior of DBP. The void ratio and water content increased significantly, while the volume of the samples slightly decreased. This seem to indicate that the porous structure of the samples was no longer the same after 1460 d of accelerated biodegradation. A slight increase in the relative density indicates that the organic/inorganic matter ratio increased. The results of permeability tests performed with samples at various stages of biodegradation and at various confining stresses show that the saturated hydraulic conductivity of recompacted biodegraded DBP decreased from 7 x 10(-7)cm/s to approximately 2 x 10(-7)cm/s, as biodegradation advanced.


Assuntos
Biodegradação Ambiental , Eliminação de Resíduos/métodos , Conservação dos Recursos Naturais/métodos , Poluição Ambiental/prevenção & controle , Resíduos Industriais , Fatores de Tempo
14.
Waste Manag ; 76: 364-373, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29798807

RESUMO

An examination of the processes contributing to the production of landfill greenhouse gas (GHG) emissions is required, as the actual level to which waste degrades anaerobically and aerobically beneath covers has not been differentiated. This paper presents a methodology to distinguish between the rate of anaerobic digestion (rAD), composting (rCOM) and CH4 oxidation (rOX) in a landfill environment, by means of a system of mass balances developed for molecular species (CH4, CO2) and stable carbon isotopes (δ13C-CO2 and δ13C-CH4). The technique was applied at two sampling locations on a sloped area of landfill. Four sampling rounds were performed over an 18 month period after a 1.0 m layer of fresh waste and 30-50 cm of silty clay loam had been placed over the area. Static chambers were used to measure the flux of the molecular and isotope species at the surface and soil gas probes were used to collect gas samples at depths of approximately 0.5, 1.0 and 1.5 m. Mass balances were based on the surface flux and the concentration of the molecular and isotopic species at the deepest sampling depth. The sensitivity of calculated rates was considered by randomly varying stoichiometric and isotopic parameters by ±5% to generate at least 500 calculations of rOX, rAD and rCOM for each location in each sampling round. The resulting average value of rAD and rCOM indicated anaerobic digestion and composting were equally dominant at both locations. Average values of rCOM: ranged from 9.8 to 44.5 g CO2 m-2 d-1 over the four sampling rounds, declining monotonically at one site and rising then falling at the other. Average values of rAD: ranged from 10.6 to 45.3 g CO2 m-2 d-1. Although the highest average rAD value occurred in the initial sampling round, all subsequent rAD values fell between 10 and 20 g CO2 m-2 d-1. rOX had the smallest activity contribution at both sites, with averages ranging from 1.6 to 8.6 g CO2 m-2 d-1. This study has demonstrated that for an interim cover, composting and anaerobic digestion of shallow landfill waste can occur simultaneously.


Assuntos
Compostagem , Metano/análise , Instalações de Eliminação de Resíduos , Eliminação de Resíduos , Solo
15.
Waste Manag ; 78: 669-676, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32559958

RESUMO

The performance of biofiltration to mitigate CH4 emissions from cow barns was investigated in the laboratory using two flow-through columns constructed with an acclimatized packed bed media composed of inexpensive materials and readily available in an agricultural context. The biofilters were fed with artificial exhaust gas at a constant rate of 0.036 m3 h-1 and low inlet CH4 concentration (0.22 g m-3 = 300 ppm). The empty-bed residence time (EBRT) was equal to 0.21 h. Additionally, in order to simulate temperature changes under natural conditions and determine the influence of such cycles on CH4 removal efficiency, the upper part of the biofilters were submitted to temperature oscillations over time. The maximum oxidation rate (1.68 µg CH4 gdw-1h-1) was obtained with the commercial compost mixed with straw. Accordingly, it was considered as packing bed media for the biofilters. The CH4 removal efficiency was affected by the temperature prevailing within the biofilters, by the way in which the cooling-warming cycles were applied and by the acclimatization process. The shorter the cooling-warming cycles, the more oxidation rates varied. With longer cycles, CH4 removal rates stabilized and CH4 removal efficiencies attained nearly 100% in both biofilters, and remained at this level for more than 100 days, irrespective of the temperature at the top of the biofilter, which was - at times - adverse for microbiological activity. The first order rate constant for CH4 oxidation kinetics of the entire system was estimated at 15 h-1. If such rate could be transposed to real field conditions in Canada, home to nearly 945,000 dairy cows, biofiltration may be applied to efficiently abate between 2 × 106 and 3 × 106 t yr-1 of CO2 equivalent (depending on how estimates are performed) from bovine enteric fermentation alone.

16.
Waste Manag ; 63: 172-187, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27931937

RESUMO

The efficiency of methane oxidation in passive methane oxidation biosystems (PMOBs) is influenced by, among other things, the intensity and distribution of the CH4 loading at the base of the methane oxidation layer (MOL). Both the intensity and distribution are affected by the capillary barrier that results from the superposition of the two materials constituting the PMOB, namely the MOL and the gas distribution layer (GDL). The effect of capillary barriers on the unsaturated flow of water has been well documented in the literature. However, its effect on gas flow through PMOBs is still poorly documented. In this study, sets of numerical simulations were performed to evaluate the effect of unsaturated hydraulic characteristics of the MOL material on the value and distribution of moisture and hence, the ease and uniformity in the distribution of the upward flow of biogas along the GDL-MOL interface. The unsaturated hydraulic parameters of the materials used to construct the experimental field plot at the St-Nicephore landfill (Quebec, Canada) were adopted to build the reference simulation of the parametric study. The behavior of the upward flow of biogas for this particular material was analyzed based on its gas intrinsic permeability function, which was obtained in the laboratory. The parameters that most influenced the distribution and the ease of biogas flow at the base of the MOL were the saturated hydraulic conductivity and pore size distribution of the MOL material, whose effects were intensified as the slope of the interface increased. The effect of initial dry density was also assessed herein. Selection of the MOL material must be made bearing in mind that these three parameters are key in the effort to prevent unwanted restriction in the upward flow of biogas, which may result in the redirection of biogas towards the top of the slope, leading to high CH4 fluxes (hotspots). In a well-designed PMOB, upward flow of biogas across the GDL-MOL interface is unrestricted and moisture distribution is uniform. This paper tries to show how to obtain this.


Assuntos
Poluentes Atmosféricos/análise , Metano/análise , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Poluição do Ar/prevenção & controle , Oxirredução , Permeabilidade , Quebeque
17.
Waste Manag ; 69: 298-314, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28826809

RESUMO

The design process of passive methane oxidation biosystems needs to include design criteria that account for the effect of unsaturated hydraulic behavior on landfill gas migration, in particular, restrictions to landfill gas flow due to the capillary barrier effect, which can greatly affect methane oxidation rates. This paper reports the results of numerical simulations performed to assess the landfill gas flow behavior of several passive methane oxidation biosystems. The concepts of these biosystems were inspired by selected configurations found in the technical literature. We adopted the length of unrestricted gas migration (LUGM) as the main design criterion in this assessment. LUGM is defined as the length along the interface between the methane oxidation and gas distribution layers, where the pores of the methane oxidation layer material can be considered blocked for all practical purposes. High values of LUGM indicate that landfill gas can flow easily across this interface. Low values of LUGM indicate greater chances of having preferential upward flow and, consequently, finding hotspots on the surface. Deficient designs may result in the occurrence of hotspots. One of the designs evaluated included an alternative to a concept recently proposed where the interface between the methane oxidation and gas distribution layers was jagged (in the form of a see-saw). The idea behind this ingenious concept is to prevent blockage of air-filled pores in the upper areas of the jagged segments. The results of the simulations revealed the extent of the capability of the different scenarios to provide unrestricted and conveniently distributed upward landfill gas flow. They also stress the importance of incorporating an appropriate design criterion in the selection of the methane oxidation layer materials and the geometrical form of passive biosystems.


Assuntos
Poluentes Atmosféricos/análise , Eliminação de Resíduos/métodos , Metano/análise , Oxirredução , Instalações de Eliminação de Resíduos
18.
Waste Manag ; 63: 238-245, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27544724

RESUMO

LandGEM's equation was reformulated to include two types of refuse, fast decaying refuse (FDR) and slow decaying refuse (SDR), whose fractions and key modeling parameters k and L0 were optimized independently for three periods in the life of the Montreal-CESM landfill. Three scenarios were analyzed and compared to actual biogas collection data: (1) Two-Variable Scenario, where k and L0 were optimized for a single type of refuse; (2) Six-Variable Scenario, where three sets of k and L0 were optimized for the three periods and for a single type of refuse; and (3) Seven-Variable Scenario, whereby optimization was performed for two sets of k and L0, one associated with FDR and the second with SDR, and for the fraction of FDR during each of the three periods. Results showed that the lowest error from the error minimization technique was obtained with the Six-Variable Scenario. However, this scenario's estimation of gas generation was found to be rather unlikely. The Seven-Variable Scenario, which allowed for considerations about changes in landfilling trends, offered a more reliable prediction tool for landfill gas generation and optimal shutdown time of the biogas collection system, when the minimum technological threshold would be attained. The methodology could potentially be applied mutatis mutandis to other landfills, by considering their specific waste disposal and gas collection histories.


Assuntos
Poluentes Atmosféricos/análise , Eliminação de Resíduos/métodos , Resíduos Sólidos , Instalações de Eliminação de Resíduos , Monitoramento Ambiental , Metano/análise , Modelos Teóricos
19.
Waste Manag ; 55: 313-20, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27177464

RESUMO

The rhizosphere is known as the most active biogeochemical layer of the soil. Therefore, it could be a beneficial environment for biotic methane oxidation. The aim of this study was to document - by means of batch incubation tests - the kinetics of CH4 oxidation in rhizosphere soils that were previously exposed to methane. Soils from three pre-exposure to CH4 zones were sampled: the never-before pre-exposed (NEX), the moderately pre-exposed (MEX) and the very pre-exposed (VEX). For each pre-exposure zone, the rhizosphere of several plant species was collected, pre-incubated, placed in glass vials and submitted to CH4 concentrations varying from 0.5% to 10%. The time to the beginning of CH4 consumption and the CH4 oxidation rate were recorded. The results showed that the fastest CH4 consumption occurred for the very pre-exposed rhizosphere. Specifically, a statistically significant difference in CH4 oxidation half-life was found between the rhizosphere of the VEX vegetated with a mixture of different plants and the NEX vegetated with ryegrass. This difference was attributed to the combined effect of the preconditioning level and plant species as well as to the organic matter content. Regardless of the preconditioning level, the oxidation rate values obtained in this study were comparable to those reported in the reviewed literature for mature compost.


Assuntos
Biodegradação Ambiental , Metano/metabolismo , Plantas/metabolismo , Eliminação de Resíduos , Rizosfera , Cinética , Oxirredução , Microbiologia do Solo
20.
Environ Technol ; 37(12): 1480-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26581845

RESUMO

This study aimed to compare the performance of an internal combustion engine fed with blends of biodiesel produced from soybean and diesel, and blends of biodiesel produced from beef tallow and diesel. Performance was evaluated in terms of power generated at low loading conditions (0.5, 1.0 and 1.5 kW) and emission of organic and inorganic pollutants. In order to analyse inorganic gases (CO, SO2 and NOx), an automatic analyser was used and the organic emissions (benzene, toluene, ethylbenzene and xylene - BTEX) were carried out using a gas chromatograph. The results indicate that the introduction of the two biodiesels in the fuel caused a reduction in CO, SO2 and BTEX emissions. In addition, the reduction was proportional to the increase in loading regime. Beef tallow biodiesels presented better results regarding emission than soybean biodiesels. The use of pure biodiesels also presented a net reduction in pollutant gas emissions without hindering the engine generator performance.


Assuntos
Poluentes Atmosféricos/análise , Biocombustíveis , Gorduras/química , Glycine max/química , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/química , Brasil , Compostos Orgânicos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA