RESUMO
This work presents a magnetic purification method of human erythrocyte Acetylcholinesterase (EC 3.1.1.7; AChE) based on affinity binding to procainamide (Proca) as ligand. Acetylcholinesterase is an acetylcholine-regulating enzyme found in different areas of the body and associated with various neurological disorders, such as Parkinson, Alzheymer and Amyotrophic Lateral Sclerosis. AChE from human erythrocyte purification has been attempted in recent years with low degree of purity. Here, magnetic nanoparticles (MNP) were synthesized and coated with polyaniline (PANI) and procainamide (PROCA) was covalently linked to the PANI. The extracted human erythrocyte AChE formed a complex with the MNP@PANI-PROCA and an external magnet separated it from the undesired proteins. Finally, the enzyme was collected by increasing the ionic strength. Experimental Box-Behnken design was developed to optimize this process of human erythrocyte AChE purification protocol. The enzyme was purified in all fifteen experiments. However, the best AChE purification result was achieved, about 2000 times purified, when 100 mg of MNP@PANI-PROCA was incubated for one hour with 4 ml hemolysate extract. The SDS-PAGE of this preparation presented a molecular weight of approximately 70 kDa, corroborating with few previous studies of AChE from erythrocyte purification.
Assuntos
Acetilcolinesterase , Eritrócitos , Nanopartículas de Magnetita , Procainamida , Humanos , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/isolamento & purificação , Eritrócitos/enzimologia , Nanopartículas de Magnetita/química , Procainamida/química , Compostos de Anilina/químicaRESUMO
The ability to reversibly bind carbohydrates is an incredible property from lectins. Such characteristic has led these molecules to be employed in several applications involving medical research and biotechnology. Generally, these proteins follow several steps towards purification. Here, the synthesis, physical characterization, and use of levan-coated magnetite nanoparticles (MNPs-levan) for lectin isolation is described. Canavalia ensiformis and Cratylia mollis were used as sources of Concanavalin A and Cramoll, respectively, that were purified by using MNPs-levan. Mass spectrometry, SDS-PAGE, and hemagglutinating activity were employed to assess the efficiency of the process. Moreover, by using mass spectrometry approaches, a novel lectin, similar to Canavalin, was also identified for C. mollis, corroborating the advantages of using nanoparticles over microparticles. MNPs-levan could also be recycled, making this a low-cost, scalable process that can be efficiently employed over crude samples.
Assuntos
Fabaceae , Nanopartículas de Magnetita , Fabaceae/química , Óxido Ferroso-Férrico , Frutanos , Lectinas/análise , Lectinas/química , Extratos Vegetais/análise , Lectinas de Plantas/química , Plantas/metabolismo , Sementes/químicaRESUMO
Tannase (tannin acyl hydrolase, E.C. 3.1.1.20) is an enzyme that catalyzes the hydrolysis of ester and depside linkages in hydrolysable tannins such as tannic acid, releasing gallic acid and glucose. It has several commercial applications in food industry, among which are gallic acid production, reduction of tannin content in fruit juices, and preparation of instantaneous tea. In this study we immobilized Aspergillus ficuum tannase in calcium alginate beads and then used it to treat boldo (Peumus boldus) tea. Such a technique allowed entrapping tannase with a 75% efficiency and appreciably increasing its thermal and pH stability compared with the free enzyme. Storage stability and reuse of the immobilized enzyme were very promising, in that about 60% of starting enzyme activity was retained after bead storage for 90â¯days at 4⯰C or after six cycles of use. Boldo tea treatment with immobilized tannase for 120â¯min at 40⯰C led to 31 and 60% removals of tannins and epigallocatechin gallate, an increase of about two orders of magnitude in gallic acid content, 56 and 109% increases in total flavonoids and epigallocatechin contents, a 42.8% increase in antioxidant activity and significant enhancements of tea color, clarity and pH.
Assuntos
Alginatos/química , Aspergillus/enzimologia , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Peumus/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Microesferas , Fenóis/metabolismoRESUMO
This work presents an inexpensive, simple and fast procedure to purify trypsin based on affinity binding with ferromagnetic particles of azocasein composite (mAzo). Crude extract was obtained from intestines of fish Nile tilapia (Oreochromis niloticus) homogenized in buffer (01g tissue/ml). This extract was exposed to 100mg of mAzo and washed to remove unbound proteins by magnetic field. Trypsin was leached off under high ionic strength (3M NaCl). Preparation was achieved containing specific activity about 60 times higher than that of the crude extract. SDS-PAGE showed that the purified protein had molecular weight (24kDa) in concordance with the literature for the Nile tilapia trypsin. The mAzo composite can be reused and applied to purify trypsin from other sources.
Assuntos
Caseínas/química , Ciclídeos/metabolismo , Intestinos/enzimologia , Tripsina/isolamento & purificação , Animais , Fracionamento Químico , Proteínas de Peixes/química , Proteínas de Peixes/isolamento & purificação , Ferro/química , Nanopartículas de Magnetita/química , Peso Molecular , Tripsina/químicaRESUMO
The ability to reversibly bind carbohydrates is an incredible property from lectins. Such characteristic has led these molecules to be employed in several applications involving medical research and biotechnology. Generally, these proteins follow several steps towards purification. Here, the synthesis, physical characterization, and use of levan-coated magnetite nanoparticles (MNPs-levan) for lectin isolation is described. Canavalia ensiformis and Cratylia mollis were used as sources of Concanavalin A and Cramoll, respectively, that were purified by using MNPs-levan. Mass spectrometry, SDS-PAGE, and hemagglutinating activity were employed to assess the efficiency of the process. Moreover, by using mass spectrometry approaches, a novel lectin, similar to Canavalin, was also identified for C. mollis, corroborating the advantages of using nanoparticles over microparticles. MNPs-levan could also be recycled, making this a low-cost, scalable process that can be efficiently employed over crude samples.