Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 23(4): 1433-1442, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488493

RESUMO

MDR3 (multidrug resistance 3) deficiency in humans (MDR2 in mice) causes progressive familial intrahepatic cholestasis type 3 (PFIC3). PFIC3 is a lethal disease characterized by an early onset of intrahepatic cholestasis progressing to liver cirrhosis, a preneoplastic condition, putting individuals at risk of hepatocellular carcinoma (HCC). Hepatocyte-like organoids from MDR2-deficient mice (MDR2KO) were used in this work to study the molecular alterations caused by the deficiency of this transporter. Proteomic analysis by mass spectrometry allowed characterization of 279 proteins that were differentially expressed in MDR2KO compared with wild-type organoids. Functional enrichment analysis indicated alterations in three main cellular functions: (1) interaction with the extracellular matrix, (2) remodeling intermediary metabolism, and (3) cell proliferation and differentiation. The affected cellular processes were validated by orthogonal molecular biology techniques. Our results point to molecular mechanisms associated with PFIC3 that may drive the progression to liver cirrhosis and HCC and suggest proteins and cellular processes that could be targeted for the development of early detection strategies for these severe liver diseases.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Carcinoma Hepatocelular , Colestase Intra-Hepática , Colestase , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Carcinoma Hepatocelular/patologia , Colestase/genética , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos Knockout , Proteômica
2.
Arterioscler Thromb Vasc Biol ; 43(11): 2213-2222, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37732482

RESUMO

BACKGROUND: Systemic inflammatory diseases, such as sepsis and severe COVID-19, provoke acute respiratory distress syndrome in which the pathological hyperpermeability of the microvasculature, induced by uncontrolled inflammatory stimulation, causes pulmonary edema. Identifying the inflammatory mediators that induce human lung microvascular endothelial cell barrier dysfunction is essential to find the best anti-inflammatory treatments for critically ill acute respiratory distress syndrome patients. METHODS: We have compared the responses of primary human lung microvascular endothelial cells to the main inflammatory mediators involved in cytokine storms induced by sepsis and SARS-CoV2 pulmonary infection and to sera from healthy donors and severely ill patients with sepsis. Endothelial barrier function was measured by electric cell-substrate impedance sensing, quantitative confocal microscopy, and Western blot. RESULTS: The human lung microvascular endothelial cell barrier was completely disrupted by IL (interleukin)-6 conjugated with soluble IL-6R (IL-6 receptor) and by IL-1ß (interleukin-1beta), moderately affected by TNF (tumor necrosis factor)-α and IFN (interferon)-γ and unaffected by other cytokines and chemokines, such as IL-6, IL-8, MCP (monocyte chemoattractant protein)-1 and MCP-3. The inhibition of IL-1 and IL-6R simultaneously, but not separately, significantly reduced endothelial hyperpermeability on exposing human lung microvascular endothelial cells to a cytokine storm consisting of 8 inflammatory mediators or to sera from patients with sepsis. Simultaneous inhibition of IL-1 and JAK (Janus kinase)-STAT (signal transducer and activator of transcription protein), a signaling node downstream IL-6 and IFN-γ, also prevented septic serum-induced endothelial barrier disruption. CONCLUSIONS: These findings strongly suggest a major role for both IL-6 trans-signaling and IL-1ß signaling in the pathological increase in permeability of the human lung microvasculature and reveal combinatorial strategies that enable the gradual control of pulmonary endothelial barrier function in response to a cytokine storm.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Sepse , Humanos , Interleucina-6/metabolismo , Síndrome da Liberação de Citocina , Células Endoteliais/metabolismo , RNA Viral/metabolismo , Pulmão/metabolismo , Interferon gama/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , COVID-19/metabolismo , Sepse/metabolismo , Interleucina-1/metabolismo
3.
Cell Mol Life Sci ; 79(1): 61, 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-34999972

RESUMO

Apical localization of Intercellular Adhesion Receptor (ICAM)-1 regulates the adhesion and guidance of leukocytes across polarized epithelial barriers. Here, we investigate the molecular mechanisms that determine ICAM-1 localization into apical membrane domains of polarized hepatic epithelial cells, and their effect on lymphocyte-hepatic epithelial cell interaction. We had previously shown that segregation of ICAM-1 into apical membrane domains, which form bile canaliculi and bile ducts in hepatic epithelial cells, requires basolateral-to-apical transcytosis. Searching for protein machinery potentially involved in ICAM-1 polarization we found that the SNARE-associated protein plasmolipin (PLLP) is expressed in the subapical compartment of hepatic epithelial cells in vitro and in vivo. BioID analysis of ICAM-1 revealed proximal interaction between this adhesion receptor and PLLP. ICAM-1 colocalized and interacted with PLLP during the transcytosis of the receptor. PLLP gene editing and silencing increased the basolateral localization and reduced the apical confinement of ICAM-1 without affecting apicobasal polarity of hepatic epithelial cells, indicating that ICAM-1 transcytosis is specifically impaired in the absence of PLLP. Importantly, PLLP depletion was sufficient to increase T-cell adhesion to hepatic epithelial cells. Such an increase depended on the epithelial cell polarity and ICAM-1 expression, showing that the epithelial transcytotic machinery regulates the adhesion of lymphocytes to polarized epithelial cells. Our findings strongly suggest that the polarized intracellular transport of adhesion receptors constitutes a new regulatory layer of the epithelial inflammatory response.


Assuntos
Adesão Celular/fisiologia , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Fígado/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/genética , Transcitose/fisiologia
4.
Cell Mol Life Sci ; 77(11): 2125-2140, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31396656

RESUMO

VE-cadherin plays a central role in controlling endothelial barrier function, which is transiently disrupted by proinflammatory cytokines such as tumor necrosis factor (TNFα). Here we show that human endothelial cells compensate VE-cadherin degradation in response to TNFα by inducing VE-cadherin de novo synthesis. This compensation increases adherens junction turnover but maintains surface VE-cadherin levels constant. NF-κB inhibition strongly reduced VE-cadherin expression and provoked endothelial barrier collapse. Bacterial lipopolysaccharide and TNFα upregulated the transcription factor ETS1, in vivo and in vitro, in an NF-κB dependent manner. ETS1 gene silencing specifically reduced VE-cadherin protein expression in response to TNFα and exacerbated TNFα-induced barrier disruption. We propose that TNFα induces not only the expression of genes involved in increasing permeability to small molecules and immune cells, but also a homeostatic transcriptional program in which NF-κB- and ETS1-regulated VE-cadherin expression prevents the irreversible damage of endothelial barriers.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Células Endoteliais/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Junções Aderentes/genética , Junções Aderentes/metabolismo , Animais , Antígenos CD/genética , Caderinas/genética , Permeabilidade Capilar , Células Endoteliais/citologia , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , Proteólise , Proteína Proto-Oncogênica c-ets-1/genética , Regulação para Cima
5.
Elife ; 122024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597186

RESUMO

Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell-cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.


Assuntos
Actomiosina , Molécula 1 de Adesão Intercelular , Animais , Camundongos , Humanos , Actomiosina/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Citoesqueleto de Actina/metabolismo , Leucócitos/metabolismo , Polaridade Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA