RESUMO
Ionic polarization and dielectric function play a fundamental role in the optoelectronic properties of hybrid perovskites, currently one of the most studied materials for next generation photovoltaics. The hybrid nature of the crystal, with molecular dipoles that can reorient within the inorganic lattice, gives rise to a complex dielectric response in the bulk material that has been largely studied and debated. Here, we investigate the nature and the relaxation properties of the dielectric polarization of hybrid perovskites at finite temperature by means of classical molecular dynamics. We provide evidence that a simple ionic model of classical interatomic forces is able to explain qualitatively the temperature and frequency dependence of the dielectric constant providing a picture that is fully consistent with experimental data. The constant dielectric function in the low-temperature phase is controlled by ionic displacements, while the temperature-dependent paraelectric behavior of the tetragonal phase is due to reorientation of dipoles that are responsible for the discontinuity at the orthorhombic-to-tetragonal transition. In the frequency domain, the molecular reorientations give rise to a broad band that is located in the 0.1 THz timescale at room temperature and that shifts down to the GHz timescale when cooling the system toward the tetragonal-to-orthorhombic phase transition. The relation between relaxation time and maximum absorption frequency is also clarified.
RESUMO
High carrier mobility is often invoked to justify the exceptionally long diffusion length in CH3NH3PbI3 perovskites. Using a combination of an ab initio band structure and scattering models, we present clear evidence that large electrical and Hall mobilities are crucially related to the low scattering rate of carriers with polar optical phonons, which represents the dominant mobility-limiting mechanism at room temperature. With a charge-injection regime at room temperature, we obtained carrier relaxation times (τrel) of â¼10 fs, which are typical of polar inorganic semiconductors, and electrical mobilities (µ) as high as â¼60 cm(2) V(-1) s(-1) and 40 cm(2) V(-1) s(-1) for electrons and holes, respectively, which were robustly independent on the injected carrier density in the range of n â¼ 10(14) cm(-3) to 10(20) cm(-3). In the absence of a significant concentration of trapping centers, these mobilities foster diffusion lengths of â¼10 µm for the low injection density regime (n â¼ 10(15) cm(-3)), which are in agreement with recent measurements for highly pure single-crystal perovskites.
RESUMO
The possibility of improving the efficacy of resveratrol, a polyphenol with strong antioxidant and free-radical scavenging properties, on cell proliferation and photoprotection by liposomal incorporation was investigated. Oligolamellar vesicles of different lipid compositions, loaded with resveratrol, were prepared and characterized by evaluating size, zeta potential, incorporation efficiency, electron microscopy and stability over 60 days. The effect of free and liposomal resveratrol on the viability of HEK 293 cells and their photoprotection after UV-B irradiation was assessed by the MTS method. Resveratrol decreased the cell viability at 100microM concentration, while at 10microM increased cell proliferation and also achieved the most effective photoprotection. Photomicrographs of the treated cells from inverted light and fluorescence microscopy demonstrated resveratrol effectiveness at 10microM, as well as its toxicity at higher concentrations, based on changes in cell shape, detachment and apoptotic features. Interestingly, liposomes prevented the cytotoxicity of resveratrol at high concentrations, even at 100microM, avoiding its immediate and massive intracellular distribution, and increased the ability of resveratrol to stimulate the proliferation of the cells and their ability to survive under stress conditions caused by UV-B light.
Assuntos
Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Lipídeos/química , Lipossomos , Estilbenos/farmacologia , Protetores Solares/farmacologia , Raios Ultravioleta , Linhagem Celular , Proliferação de Células/efeitos da radiação , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Composição de Medicamentos , Estabilidade de Medicamentos , Células Epiteliais/efeitos da radiação , Humanos , Microscopia de Fluorescência , Tamanho da Partícula , Resveratrol , Estilbenos/química , Estilbenos/toxicidade , Protetores Solares/química , Protetores Solares/toxicidade , Fatores de TempoRESUMO
In this study the influence of liposomal incorporation on both the stability and the in vitro (trans) dermal delivery of verbascoside was evaluated. The effect of drug entrapment into vesicles on its radical scavenging activity was also studied. Liposomes were obtained from soy phosphatidylcholine and cholesterol according to the film hydration method. Stability of verbascoside-loaded vesicles was studied over 6 months. Results showed that verbascoside can be incorporated in liposomes (E% = 57-66%), preventing its degradation. Stability studies (dynamic lager light scattering [DLLS] measurements and transmission electron microscopy [TEM] visualization) pointed out that vesicles were stable for 90 days and neither verbascoside leakage nor vesicle size alteration occurred during this period. The effects of vesicular incorporation on verbascoside diffusion through skin were investigated in vitro using newborn pig skin. Results showed that liposomes promoted drug accumulation into the stratum corneum but they did not give rise to any significant transdermal verbascoside delivery. Finally, results obtained from a 1, 1-diphenyl-2-pierylhydrazyl (DPPH) radical assay demonstrated that liposomes did not interfere with the radical scavenging activity of verbascoside.
Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Glucosídeos/administração & dosagem , Lipossomos/química , Fenóis/administração & dosagem , Pele/metabolismo , Animais , Compostos de Bifenilo/química , Sistemas de Liberação de Medicamentos , Sequestradores de Radicais Livres/metabolismo , Radicais Livres , Hidrazinas/química , Luz , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Permeabilidade , Picratos , Espalhamento de Radiação , SuínosRESUMO
Essential oils are recognized as valuable active pharmaceutical ingredients attributed to a set of biological properties, which include antibacterial, antifungal, antiviral, antioxidant, anticancer, immune-modulatory, analgesic and anti-inflammatory activities. Their use in pharmaceutics is however compromised by their limited water solubility and low physicochemical stability (i.e. volatility, oxidation). In order to overcome these limitations, we aimed to develop nanostructured lipid carriers (NLC) as delivery systems for Mediterranean essential oils, in particular Rosmarinus officinalis L., Lavandula x intermedia "Sumian", Origanum vulgare subsp. hirtum and Thymus capitatus essential oils, selected on the basis of their antioxidant and anti-inflammatory activities. NLC composed of Softisan (as solid lipid) have been produced by phase inversion temperature (PIT) and high-pressure homogenization (HPH), using two different emulsifiers systems. Particles have been further characterized for their mean particle size, polydispersity, zeta potential, morphology and chemical interactions. Best NLC formulations were obtained with Kolliphor/Labrafil as surfactants, and using Rosmarinus, Lavandula and Origanum as essential oils (PDI between 0.126 and 0.141, Zaveâ¯<â¯200â¯nm). Accelerated stability studies have also been carried out to estimate the effect of the production method and surfactant composition on the long-term stability of EOs-loaded NLC. In vitro biological cell viability and anti-inflammatory activities were evaluated in Raw 264.7 cells (macrophage cell line), while in vitro antioxidant activity was checked by DPPH assay. Lavandula and Rosmarinus NLC were shown to be the most biocompatible formulations up to a concentration of 0.1% (v/v), whereas they were able to induce a dose-dependent anti-inflammatory activity in the order Lavandulaâ¯>â¯Rosmarinusâ¯≥â¯Origanum.
Assuntos
Lavandula , Óleos Voláteis , Origanum , Rosmarinus , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Antioxidantes/administração & dosagem , Antioxidantes/química , Compostos de Bifenilo/química , Sobrevivência Celular , Lipídeos/administração & dosagem , Lipídeos/química , Lipopolissacarídeos/farmacologia , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Óxido Nítrico/metabolismo , Óleos Voláteis/administração & dosagem , Óleos Voláteis/química , Picratos/química , Células RAW 264.7RESUMO
We study the diffusion of point defects in crystalline methylammonium lead halide (MAPI) at finite temperatures by using all-atoms molecular dynamics. We find that, for what concerns intrinsic defects, iodine diffusion is by far the dominant mechanism of ionic transport in MAPI, with diffusivities as high as 7.4 × 10(-7) and 4.3 × 10(-6) cm(2) s(-1) at 300 K and single activation energies of 0.24 and 0.10 eV, for interstitials and vacancies, respectively. The comparison with common covalent and oxide crystals reveals the ultrahigh mobility of defects in MAPI. Though at room temperature the vacancies are about 1 order of magnitude more diffusive, the anisotropic interstitial dynamics increases more rapidly with temperature, and it can be dominant at high temperatures. Present results are fully consistent with the involvement of iodide ions in hysteresis and have implications for improvement of the material quality by better control of defect diffusion.
RESUMO
The temperature evolution of vibrations of CH3NH3PbI3 (MAPI) is studied by combining first principles and classical molecular dynamics and compared to available experimental data. The work has a fundamental character showing that it is possible to reproduce the key features of the vibrational spectrum by the simple physical quantities included in the classical model, namely the ionic-dispersive hybrid interactions and the mass difference between organic and inorganic components. The dynamics reveals a sizable temperature evolution of the MAPI spectrum along with the orthorhombic-to-tetragonal-to-cubic transformation and a strong dependence on molecular confinement and order. The thermally induced weakening of the H-I interactions and the anharmonic mixing of modes give two vibrational peaks at 200-250 cm(-1) that are not present at zero temperature and are expected to have detectable infrared activity. The infrared inactive vibrational peak at â¼140 cm(-1) due to molecular spinning disappears abruptly at the orthorhombic-to-tetragonal transition and forms a broad molecular band red-shifting progressively with temperature. This trend is correlated to the reduced confinement of the rotating cations due to thermal expansion of the lattice.
RESUMO
Semiconducting polymer/water interfaces are gaining increasing attention due to a variety of promising applications in the fields of biology and electrochemistry, such as electrochemically-gated transistors and photodetectors, which have been used for biosensing and neuroscience applications. However, a detailed characterization of the polymer surface in the presence of an aqueous environment is still lacking. In this work, we employed sum-frequency generation vibrational spectroscopy, a surface-specific technique compatible with electrochemical/biological conditions, to demonstrate that the surface of thin films of regio-regular poly-3-hexylthiophene (rr-P3HT) undergoes a molecular reorientation when exposed to aqueous electrolytes, with respect to their surface structure in air. Experimental results are corroborated by molecular dynamics simulations. Since surface molecular orientation is believed to play a fundamental role in electrochemical and environmental stability of conjugated polymers, the reported findings not only contribute to the fundamental understanding of conjugated polymer/water interfaces, but they may also have implications in the design of conjugated polymers for enhancing their performance in electrolytic environments.
RESUMO
In this work, we focused on how composition and preparation method of vesicles might affect their morphological features and delivery performances. Penetration Enhancer-containing Vesicles, PEVs, vesicles containing a water miscible penetration enhancer (Transcutol® P; 10%, 20%, 30% v/v) and encapsulating diclofenac sodium, were formulated and compared with conventional liposomes. A cheap and unpurified commercial mixture of phospholipids, fatty acids, and triglycerides (Phospholipon® 50) was used, and the effects of this heterogeneous composition (along with the presence or absence of transcutol and the production method) on vesicle morphology, size, surface charge, drug loading, and stability were investigated. The variations in vesicle structure, bilayer thickness, and number of lamellae were assessed by TEM and Small and Wide Angle X-ray Scattering, which also proved the liquid state of the vesicular bilayer. Further, vesicles were evaluated for ex vivo (trans)dermal delivery, and their mode of action was studied performing a pre-treatment test and confocal laser scanning microscopy analyses. Results showed the formation of multi- and unilamellar vesicles that provided improved diclofenac delivery to pig skin, influenced by vesicle lipid composition and structure. Images of the qualitative CLSM analyses support the conclusion that PEVs enhance drug transport by penetrating intact the stratum corneum, thanks to a synergic effect of vesicles and penetration enhancer.