Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901826

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia in elderly people; currently, there is no efficient treatment. Considering the increase in life expectancy worldwide AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. A great amount of experimental and clinical evidence indicated that AD is a complex disorder characterized by widespread neurodegeneration of the CNS, with major involvement of the cholinergic system, causing progressive cognitive decline and dementia. The current treatment, based on the cholinergic hypothesis, is only symptomatic and mainly involves the restoration of acetylcholine (ACh) levels through the inhibition of acetylcholinesterase (AChE). Since the introduction of the Amaryllidaceae alkaloid galanthamine as an antidementia drug in 2001, alkaloids have been one of the most attractive groups for searching for new AD drugs. The present review aims to comprehensively summarize alkaloids of various origins as multi-target compounds for AD. From this point of view, the most promising compounds seem to be the ß-carboline alkaloid harmine and several isoquinoline alkaloids since they can simultaneously inhibit several key enzymes of AD's pathophysiology. However, this topic remains open for further research on detailed mechanisms of action and the synthesis of potentially better semi-synthetic analogues.


Assuntos
Alcaloides , Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Inibidores da Colinesterase/farmacologia , Alcaloides/farmacologia , Galantamina/uso terapêutico
2.
Saudi Pharm J ; 31(8): 101684, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37457365

RESUMO

Ambelline, an alkaloid from the Amaryllidaceae family with a crinane-type skeleton, has not yet demonstrated any outstanding biological activity. However, its analogues prepared by derivatization of the C-11 hydroxyl group show different interesting effects. Continuing our earlier work, twelve novel aromatic esters were developed (10, 14, 16, 17, 22-25, 30-33) and studied, together with previously synthesized derivatives (2-9, 11-13, 15, 18-21, 26-29) in terms of their cytotoxic activity. The cytotoxic potential was determined on a panel of nine human cancer cell lines and one noncancerous cell line to characterize their biological activity spectrum. To describe and foresee the structure-activity relationship for further research, substances synthesized and described in our previous work were also included in this cytotoxicity study. The most significant activity was associated with analogues having methyl (10), methoxy (14-17), or ethoxy (18) substitution on the phenyl condensed to ambelline. However, the 4-chloro-3-nitrobenzoyl derivative (32) showed the most promising IC50 values, ranging from 0.6 ± 0.1 µM to 9.9 ± 0.2 µM. In vitro cytotoxicity studies indicated the most potent antiproliferative activity of 32 in a dose-dependent and time-dependent manner. Besides, 32 was found to be effective in decreasing viability and triggering apoptosis of MOLT-4 T-lymphoblastic leukemia cells.

3.
ScientificWorldJournal ; 2022: 4102960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330351

RESUMO

Pits of dates (Phoenix dactylifera L.) have numerous nutritional benefits that could have wide-ranging applications. This study aimed to examine the effects of administering three extracts from powdered date pits on some basic physiological parameters, plasma constituents, reproductive hormones, and testicular histology in CD1 male mice. Three groups received doses of 100 mg/kg/day of lyophilized extract, a nonpolar fraction, and a polar fraction of date pits by oral gavage for 28 consecutive days. For the control, one group was administered a 1 mL/kg concentration of distilled water. The three different extracts significantly increased the plasma testosterone level but showed no significant effect on estradiol or luteinizing hormone levels, except for estradiol reduction in the polar extract group. The measured physiological or biochemical parameters or testicular histology also demonstrated no significant differences between the control mice and those mice treated with the three extracts, except for reductions in plasma urea in all extracts and in total protein in the nonpolar extract. Therefore, date pit extracts may potentially be used as a safe and effective dietary supplement. However, further investigation is needed.


Assuntos
Phoeniceae , Extratos Vegetais , Camundongos , Masculino , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Testículo , Estradiol/farmacologia
4.
Bioorg Med Chem Lett ; 51: 128374, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555506

RESUMO

Alzheimers disease (AD) is the most common neurodegenerative disorder, characterized by neuronal loss and cognitive impairment. Currently, very few drugs are available for AD treatment, and a search for new therapeutics is urgently needed. Thus, in the current study, twenty-eight new derivatives of montanine-type Amaryllidaceae alkaloids were synthesized and evaluated for their ability to inhibit human recombinant acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE). Three derivatives (1n, 1o, and 1p) with different substitution patterns demonstrated significant selective inhibitory potency for hAChE (IC50 < 5 µM), and one analog, 1v, showed selective hBuChE inhibition activity (IC50 = 1.73 ± 0.05 µM). The prediction of CNS availability, as disclosed by the BBB score, suggests that the active compounds in this survey should be able pass through the blood-brain barrier (BBB). Cytotoxicity screening and docking studies were carried out for the two most pronounced cholinesterase inhibitors, 1n and 1v.


Assuntos
Alcaloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Isoquinolinas/farmacologia , Simulação de Acoplamento Molecular , Acetilcolinesterase/metabolismo , Alcaloides/síntese química , Alcaloides/química , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Estrutura Molecular , Relação Estrutura-Atividade
5.
Bioorg Chem ; 107: 104567, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387730

RESUMO

Twenty known Amaryllidaceae alkaloids of various structural types, and one undescribed alkaloid of narcikachnine-type, named narcieliine (3), have been isolated from fresh bulbs of Zephyranthes citrina. The chemical structures of the isolated alkaloids were elucidated by a combination of MS, HRMS, 1D and 2D NMR, and CD spectroscopic techniques, and by comparison with literature data. The absolute configuration of narcieliine (3) has also been determined. Compounds isolated in a sufficient quantity were evaluated for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7), butyrylcholinesterase (BuChE; E.C. 3.1.1.8), and prolyl oligopeptidase (POP; E.C. 3.4.21.26) inhibition activities. Significant human AChE/BuChE (hAChE/hBuChE) inhibitory activity was demonstrated by the newly described alkaloid narcieliine (3), with IC50 values of 18.7 ± 2.3 µM and 1.34 ± 0.31 µM, respectively. This compound is also predicted to cross the blood-brain barrier (BBB) through passive diffusion. The in vitro data were further supported by in silico studies of 3 in the active site of hAChE/hBuChE.


Assuntos
Alcaloides/química , Amaryllidaceae/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Amaryllidaceae/metabolismo , Sítios de Ligação , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Conformação Molecular , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
6.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209868

RESUMO

Pancracine, a montanine-type Amaryllidaceae alkaloid (AA), is one of the most potent compounds among natural isoquinolines. In previous studies, pancracine exhibited cytotoxic activity against diverse human cancer cell lines in vitro. However, further insight into the molecular mechanisms that underlie the cytotoxic effect of pancracine have not been reported and remain unknown. To fill this void, the cell proliferation and viability of cancer cells was explored using the Trypan Blue assay or by using the xCELLigence system. The impact on the cell cycle was determined by flow cytometry. Apoptosis was evaluated by Annexin V/PI and by quantifying the activity of caspases (-3/7, -8, and -9). Proteins triggering growth arrest or apoptosis were detected by Western blotting. Pancracine has strong antiproliferative activity on A549 cells, lasting up to 96 h, and antiproliferative and cytotoxic effects on MOLT-4 cells. The apoptosis-inducing activity of pancracine in MOLT-4 cells was evidenced by the significantly higher activity of caspases. This was transmitted through the upregulation of p53 phosphorylated on Ser392, p38 MAPK phosphorylated on Thr180/Tyr182, and upregulation of p27. The pancracine treatment negatively altered the proliferation of A549 cells as a consequence of an increase in G1-phase accumulation, associated with the downregulation of Rb phosphorylated on Ser807/811 and with the concomitant upregulation of p27 and downregulation of Akt phosphorylated on Thr308. This was the first study to glean a deeper mechanistic understanding of pancracine activity in vitro. Perturbation of the cell cycle and induction of apoptotic cell death were considered key mechanisms of pancracine action.


Assuntos
Adenocarcinoma de Pulmão/patologia , Proliferação de Células/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Leucemia/patologia , Neoplasias Pulmonares/patologia , Células A549 , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Amaryllidaceae/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Células Hep G2 , Compostos Heterocíclicos de 4 ou mais Anéis/isolamento & purificação , Humanos , Células MCF-7
7.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361074

RESUMO

Alzheimer's disease (AD) is a multifactorial neurodegenerative condition of the central nervous system (CNS) that is currently treated by cholinesterase inhibitors and the N-methyl-d-aspartate receptor antagonist, memantine. Emerging evidence strongly supports the relevance of targeting butyrylcholinesterase (BuChE) in the more advanced stages of AD. Within this study, we have generated a pilot series of compounds (1-20) structurally inspired from belladine-type Amaryllidaceae alkaloids, namely carltonine A and B, and evaluated their acetylcholinesterase (AChE) and BuChE inhibition properties. Some of the compounds exhibited intriguing inhibition activity for human BuChE (hBuChE), with a preference for BuChE over AChE. Seven compounds were found to possess a hBuChE inhibition profile, with IC50 values below 1 µM. The most potent one, compound 6, showed nanomolar range activity with an IC50 value of 72 nM and an excellent selectivity pattern over AChE, reaching a selectivity index of almost 1400. Compound 6 was further studied by enzyme kinetics, along with in-silico techniques, to reveal the mode of inhibition. The prediction of CNS availability estimates that all the compounds in this survey can pass through the blood-brain barrier (BBB), as disclosed by the BBB score.


Assuntos
Acetilcolinesterase/química , Alcaloides de Amaryllidaceae/química , Butirilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Neuroblastoma/tratamento farmacológico , Tiramina/análogos & derivados , Proliferação de Células , Inibidores da Colinesterase/química , Simulação por Computador , Humanos , Neuroblastoma/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Tiramina/química
8.
Molecules ; 26(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34500673

RESUMO

Alzheimer's disease (AD) is a progressive age-related neurodegenerative disease recognized as the most common form of dementia among elderly people. Due to the fact that the exact pathogenesis of AD still remains to be fully elucidated, the treatment is only symptomatic and available drugs are not able to modify AD progression. Considering the increase in life expectancy worldwide, AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. Due to their complex nitrogen-containing structures, alkaloids are considered to be promising candidates for use in the treatment of AD. Since the introduction of galanthamine as an antidementia drug in 2001, Amaryllidaceae alkaloids (AAs) and further isoquinoline alkaloids (IAs) have been one of the most studied groups of alkaloids. In the last few years, several compounds of new structure types have been isolated and evaluated for their biological activity connected with AD. The present review aims to comprehensively summarize recent progress on AAs and IAs since 2010 up to June 2021 as potential drugs for the treatment of AD.


Assuntos
Alcaloides de Amaryllidaceae/metabolismo , Amaryllidaceae/química , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Prolil Oligopeptidases/metabolismo
9.
Molecules ; 26(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34641567

RESUMO

The search for novel antimycobacterial drugs is a matter of urgency, since tuberculosis is still one of the top ten causes of death from a single infectious agent, killing more than 1.4 million people worldwide each year. Nine Amaryllidaceae alkaloids (AAs) of various structural types have been screened for their antimycobacterial activity. Unfortunately, all were considered inactive, and thus a pilot series of aromatic esters of galanthamine, 3-O-methylpancracine, vittatine and maritidine were synthesized to increase biological activity. The semisynthetic derivatives of AAs were screened for their in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Ra and two other mycobacterial strains (M. aurum, M. smegmatis) using a modified Microplate Alamar Blue Assay. The most active compounds were also studied for their in vitro hepatotoxicity on the hepatocellular carcinoma cell line HepG2. In general, the derivatization of the original AAs was associated with a significant increase in antimycobacterial activity. Several pilot derivatives were identified as compounds with micromolar MICs against M. tuberculosis H37Ra. Two derivatives of galanthamine, 1i and 1r, were selected for further structure optimalization to increase the selectivity index.


Assuntos
Alcaloides de Amaryllidaceae/síntese química , Antibacterianos/síntese química , Mycobacterium tuberculosis/efeitos dos fármacos , Alcaloides de Amaryllidaceae/efeitos adversos , Alcaloides de Amaryllidaceae/farmacologia , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana
10.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652925

RESUMO

Two new minor Amaryllidaceae alkaloids were isolated from Hippeastrum × hybridum cv. Ferrari and Narcissus pseudonarcissus cv. Carlton. The chemical structures were identified by various spectroscopic (one- and two-dimensional (1D and 2D) NMR, circular dichroism (CD), high-resolution mass spectrometry (HRMS) and by comparison with literature data of similar compounds. Both isolated alkaloids were screened for their human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE) inhibition activity. One of the new compounds, a heterodimer alkaloid of narcikachnine-type, named narciabduliine (2), showed balanced inhibition potency for both studied enzymes, with IC50 values of 3.29 ± 0.73 µM for hAChE and 3.44 ± 0.02 µM for hBuChE. The accommodation of 2 into the active sites of respective enzymes was predicted using molecular modeling simulation.


Assuntos
Alcaloides/química , Alcaloides de Amaryllidaceae/química , Inibidores da Colinesterase/química , Colinesterases/ultraestrutura , Alcaloides/farmacologia , Doença de Alzheimer , Alcaloides de Amaryllidaceae/farmacologia , Butirilcolinesterase/química , Butirilcolinesterase/ultraestrutura , Domínio Catalítico/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Colinesterases/química , Dicroísmo Circular , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
11.
J Nat Prod ; 83(5): 1359-1367, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32309949

RESUMO

A total of 20 derivatives (1-20) of the crinane-type alkaloid ambelline were synthesized. These semisynthetic derivatives were assessed for their potency to inhibit both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). To predict central nervous system (CNS) availability, logBB was calculated, and the data correlated well with those obtained from the parallel artificial membrane permeability assay (PAMPA). All compounds should be able to permeate the blood-brain barrier (BBB) according to the obtained results. A total of 7 aromatic derivatives (5, 6, 7, 9, 10, 12, and 16) with different substitution patterns showed inhibitory potency against human serum BuChE (IC50 < 5 µM), highlighting the three top-ranked compounds as follows: 11-O-(1-naphthoyl)ambelline (16), 11-O-(2-methylbenzoyl)ambelline (6), and 11-O-(2-methoxybenzoyl)ambelline (9) with IC50 values of 0.10 ± 0.01, 0.28 ± 0.02, and 0.43 ± 0.04 µM, respectively. Notably, derivatives 6, 7, 9, and 16 displayed selective human BuChE (hBuChE) inhibition profiles with a selectivity index > 100. The in vitro results were supported by computational studies predicting plausible binding modes of the compounds in the active sites of hBuChE.


Assuntos
Alcaloides de Amaryllidaceae/síntese química , Alcaloides de Amaryllidaceae/farmacologia , Amaryllidaceae/química , Butirilcolinesterase/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Alcaloides de Amaryllidaceae/farmacocinética , Barreira Hematoencefálica , Inibidores da Colinesterase/farmacocinética , Ésteres , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Especificidade por Substrato
12.
Bioorg Chem ; 100: 103928, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32450384

RESUMO

A novel series of aromatic esters (1a-1m) related to the Amaryllidaceae alkaloid (AA) haemanthamine were designed, synthesized and tested in vitro with particular emphasis on the treatment of neurodegenerative diseases. Some of the synthesized compounds revealed promising acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory profile. Significant human AChE (hAChE) inhibition was demonstrated by 11-O-(3-nitrobenzoyl)haemanthamine (1j) with IC50value of 4.0 ± 0.3 µM. The strongest human BuChE (hBuChE) inhibition generated 1-O-(2-methoxybenzoyl)haemanthamine (1g) with IC50 value 3.3 ± 0.4 µM. Moreover, 11-O-(2-chlorbenzoyl)haemanthamine (1m) was able to inhibit both enzymes in dose-dependent manner. The mode of hAChE and hBuChE inhibition was minutely inspected using enzyme kinetic analysis in tandem with in silico experiments, the latter elucidating crucial interaction in 1j-, 1m-hAChE and 1g-, 1m-hBuChE complexes. The blood-brain barrier (BBB) permeability was investigated applying the parallel artificial membrane permeation assay (PAMPA) to predict the CNS availability of the compounds.


Assuntos
Alcaloides de Amaryllidaceae/química , Amaryllidaceae/química , Ésteres/química , Fenantridinas/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/uso terapêutico , Sítios de Ligação , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Humanos , Cinética , Simulação de Acoplamento Molecular , Fenantridinas/metabolismo , Fenantridinas/uso terapêutico , Relação Estrutura-Atividade
13.
Molecules ; 25(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086636

RESUMO

Lycoris Herbert, family Amaryllidaceae, is a small genus of about 20 species that are native to the warm temperate woodlands of eastern Asia, as in China, Korea, Japan, Taiwan, and the Himalayas. For many years, species of Lycoris have been subjected to extensive phytochemical and pharmacological investigations, resulting in either the isolation or identification of more than 110 Amaryllidaceae alkaloids belonging to different structural types. Amaryllidaceae alkaloids are frequently studied for their interesting biological properties, including antiviral, antibacterial, antitumor, antifungal, antimalarial, analgesic, cytotoxic, and cholinesterase inhibition activities. The present review aims to summarize comprehensively the research that has been reported on the phytochemistry and pharmacology of the genus Lycoris.


Assuntos
Alcaloides de Amaryllidaceae/uso terapêutico , Amaryllidaceae/química , Antimaláricos/uso terapêutico , Lycoris/química , Alcaloides de Amaryllidaceae/química , Antimaláricos/química , China , Humanos , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Raízes de Plantas/química
14.
Molecules ; 25(10)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429491

RESUMO

Plants of the Amaryllidaceae family are promising therapeutic tools for human diseases and have been used as alternative medicines. The specific secondary metabolites of this plant family, called Amaryllidaceae alkaloids (AA), have attracted considerable attention due to their interesting pharmacological activities. One of them, galantamine, is already used in the therapy of Alzheimer's disease as a long acting, selective, reversible inhibitor of acetylcholinesterase. One group of AA is the montanine-type, such as montanine, pancracine and others, which share a 5,11-methanomorphanthridine core. So far, only 14 montanine-type alkaloids have been isolated. Compared with other structural-types of AA, montanine-type alkaloids are predominantly present in plants in low concentrations, but some of them display promising biological properties, especially in vitro cytotoxic activity against different cancerous cell lines. The present review aims to summarize comprehensively the research that has been published on the Amaryllidaceae alkaloids of montanine-type.


Assuntos
Alcaloides de Amaryllidaceae/química , Amaryllidaceae/química , Antineoplásicos Fitogênicos/química , Antiprotozoários/química , Inibidores da Colinesterase/química , Nootrópicos/química , Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/isolamento & purificação , Alcaloides de Amaryllidaceae/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Linhagem Celular Tumoral , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/farmacologia , Galantamina/química , Galantamina/isolamento & purificação , Galantamina/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/isolamento & purificação , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Concentração Inibidora 50 , Isoquinolinas/química , Isoquinolinas/isolamento & purificação , Isoquinolinas/farmacologia , Nootrópicos/isolamento & purificação , Nootrópicos/farmacologia , Fenantridinas/química , Fenantridinas/isolamento & purificação , Fenantridinas/farmacologia , Extratos Vegetais/química , Metabolismo Secundário
15.
Molecules ; 25(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093423

RESUMO

Bersavine is the new bisbenzylisoquinoline alkaloid isolated from the Berberis vulgaris L.(Berberidaceae) plant. The results of cytotoxicity screening 48 h post-treatment showed thatbersavine considerably inhibits the proliferation and viability of leukemic (Jurkat, MOLT-4), colon(HT-29), cervix (HeLa) and breast (MCF-7) cancer cells with IC50 values ranging from 8.1 to 11 µM.The viability and proliferation of leukemic Jurkat and MOLT-4 cells were decreased after bersavinetreatment in a time- and dose-dependent manner. Bersavine manifested concentration-dependentantiproliferative activity in human lung, breast, ovarian and hepatocellular carcinoma cell linesusing a xCELLigence assay. Significantly higher percentages of MOLT-4 cells exposed to bersavineat 20 µM for 24 h were arrested in the G1 phase of the cell cycle using the flow cytometry method.The higher percentage of apoptotic cells was measured after 24 h of bersavine treatment. Theupregulation of p53 phosphorylated on Ser392 was detected during the progression of MOLT-4 cellapoptosis. Mechanistically, bersavine-induced apoptosis is an effect of increased activity ofcaspases, while reduced proliferation seems dependent on increased Chk1 Ser345 phosphorylationand decreased Rb Ser807/811 phosphorylation in human leukemic cells.


Assuntos
Alcaloides , Antineoplásicos Fitogênicos , Apoptose/efeitos dos fármacos , Berberis/química , Citotoxinas , Fase G1/efeitos dos fármacos , Leucemia/tratamento farmacológico , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Citotoxinas/química , Citotoxinas/isolamento & purificação , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Células HeLa , Células Hep G2 , Humanos , Células Jurkat , Leucemia/metabolismo , Leucemia/patologia , Células MCF-7
16.
J Nat Prod ; 82(2): 239-248, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30701972

RESUMO

Three new alkaloids, bersavine (3), muraricine (4), and berbostrejdine (8), together with seven known isoquinoline alkaloids (1-2, 5-7, 9, and 10) were isolated from an alkaloidal extract of the root bark of Berberis vulgaris. The structures of the isolated compounds were determined by spectroscopic methods, including 1D and 2D NMR techniques, HRMS, and optical rotation, and by comparison of the obtained data with those in the literature. The NMR data of berbamine (5), aromoline (6), and obamegine (7) were completely assigned employing 2D NMR experiments. Alkaloids isolated in sufficient amounts were evaluated for their in vitro acetylcholinesterase, butyrylcholinesterase (BuChE), prolyl oligopeptidase, and glycogen synthase kinase-3ß inhibitory activities. Selected compounds were studied for their ability to permeate through the blood-brain barrier. Significant human BuChE ( hBuChE) inhibitory activity was demonstrated by 6 (IC50 = 0.82 ± 0.10 µM). The in vitro data were further supported by computational analysis that showed the accommodation of 6 in the active site of hBuChE.


Assuntos
Acetilcolinesterase/metabolismo , Alcaloides/isolamento & purificação , Doença de Alzheimer/tratamento farmacológico , Berberis/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Isoquinolinas/isolamento & purificação , Alcaloides/química , Alcaloides/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Humanos , Isoquinolinas/química , Isoquinolinas/uso terapêutico , Espectroscopia de Ressonância Magnética , Exsudatos de Plantas/análise
17.
Molecules ; 24(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766438

RESUMO

Nerine Herbert, family Amaryllidaceae, is a genus of about 30 species that are native to South Africa, Botswana, Lesotho, Namibia, and Swatini (formerly known as Swaziland). Species of Nerine are autumn-flowering, perennial, bulbous plants, which inhabit areas with summer rainfall and cool, dry winters. Most Nerine species have been cultivated for their elegant flowers, presenting a source of innumerable horticultural hybrids. For many years, species of Nerine have been subjected to extensive phytochemical and pharmacological investigations, which resulted in either the isolation or identification of more than fifty Amaryllidaceae alkaloids belonging to different structural types. Amaryllidaceae alkaloids are frequently studied for their interesting biological properties, including antiviral, antibacterial, antitumor, antifungal, antimalarial, analgesic, cytotoxic, and cholinesterase inhibition activities. The present review aims to summarize comprehensively the research that has been reported on the phytochemistry and pharmacology of the genus Nerine.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Amaryllidaceae/química , Inibidores da Colinesterase/farmacologia , Etnobotânica , Extratos Vegetais/farmacologia , Humanos
18.
Molecules ; 24(7)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959739

RESUMO

In recent studies, several alkaloids acting as cholinesterase inhibitors were isolated from Corydalis cava (Papaveraceae). Inhibitory activities of (+)-thalictricavine (1) and (+)-canadine (2) on human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) were evaluated with the Ellman's spectrophotometric method. Molecular modeling was used to inspect the binding mode of compounds into the active site pocket of hAChE. The possible permeability of 1 and 2 through the blood⁻brain barrier (BBB) was predicted by the parallel artificial permeation assay (PAMPA) and logBB calculation. In vitro, 1 and 2 were found to be selective hAChE inhibitors with IC50 values of 0.38 ± 0.05 µM and 0.70 ± 0.07 µM, respectively, but against hBChE were considered inactive (IC50 values > 100 µM). Furthermore, both alkaloids demonstrated a competitive-type pattern of hAChE inhibition and bind, most probably, in the same AChE sub-site as its substrate. In silico docking experiments allowed us to confirm their binding poses into the active center of hAChE. Based on the PAMPA and logBB calculation, 2 is potentially centrally active, but for 1 BBB crossing is limited. In conclusion, 1 and 2 appear as potential lead compounds for the treatment of Alzheimer's disease.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Alcaloides/química , Butirilcolinesterase/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/química , Alcaloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Berberina/análogos & derivados , Berberina/química , Berberina/farmacologia , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Simulação por Computador , Corydalis/química , Dissacarídeos/química , Dissacarídeos/farmacologia , Humanos , Modelos Moleculares , Nitrocompostos/química , Nitrocompostos/farmacologia , Ligação Proteica/efeitos dos fármacos
19.
Molecules ; 24(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987121

RESUMO

Twelve derivatives 1a-1m of the ß-crinane-type alkaloid haemanthamine were developed. All the semisynthetic derivatives were studied for their inhibitory potential against both acetylcholinesterase and butyrylcholinesterase. In addition, glycogen synthase kinase 3ß (GSK-3ß) inhibition potency was evaluated in the active derivatives. In order to reveal the availability of the drugs to the CNS, we elucidated the potential of selected derivatives to penetrate through the blood-brain barrier (BBB). Two compounds, namely 11-O-(2-methylbenzoyl)-haemanthamine (1j) and 11-O-(4-nitrobenzoyl)-haemanthamine (1m), revealed the most intriguing profile, both being acetylcholinesterase (hAChE) inhibitors on a micromolar scale, with GSK-3ß inhibition properties, and predicted permeation through the BBB. In vitro data were further corroborated by detailed inspection of the compounds' plausible binding modes in the active sites of hAChE and hBuChE, which led us to provide the structural determinants responsible for the activity towards these enzymes.


Assuntos
Doença de Alzheimer/metabolismo , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/metabolismo , Amaryllidaceae/química , Amaryllidaceae/metabolismo , Fenantridinas/química , Fenantridinas/metabolismo , Barreira Hematoencefálica/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular , Estrutura Molecular , Permeabilidade , Relação Estrutura-Atividade
20.
Molecules ; 23(4)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561817

RESUMO

Glycogen synthase kinase-3ß (GSK-3ß) is a multifunctional serine/threonine protein kinase that was originally identified as an enzyme involved in the control of glycogen metabolism. It plays a key role in diverse physiological processes including metabolism, the cell cycle, and gene expression by regulating a wide variety of well-known substances like glycogen synthase, tau-protein, and ß-catenin. Recent studies have identified GSK-3ß as a potential therapeutic target in Alzheimer´s disease, bipolar disorder, stroke, more than 15 types of cancer, and diabetes. GSK-3ß is one of the most attractive targets for medicinal chemists in the discovery, design, and synthesis of new selective potent inhibitors. In the current study, twenty-eight Amaryllidaceae alkaloids of various structural types were studied for their potency to inhibit GSK-3ß. Promising results have been demonstrated by alkaloids of the homolycorine-{9-O-demethylhomolycorine (IC50 = 30.00 ± 0.71 µM), masonine (IC50 = 27.81 ± 0.01 µM)}, and lycorine-types {caranine (IC50 = 30.75 ± 0.04 µM)}.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Alcaloides de Amaryllidaceae/química , Avaliação Pré-Clínica de Medicamentos , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Concentração Inibidora 50 , Inibidores de Proteínas Quinases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA