Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
EMBO J ; 42(20): e113743, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37661833

RESUMO

Mitochondria play essential roles in cancer cell adaptation to hypoxia, but the underlying mechanisms remain elusive. Through mitochondrial proteomic profiling, we here find that the prolyl hydroxylase EglN1 (PHD2) accumulates on mitochondria under hypoxia. EglN1 substrate-binding region in the ß2ß3 loop is responsible for its mitochondrial translocation and contributes to breast tumor growth. Furthermore, we identify AMP-activated protein kinase alpha (AMPKα) as an EglN1 substrate on mitochondria. The EglN1-AMPKα interaction is essential for their mutual mitochondrial translocation. After EglN1 prolyl-hydroxylates AMPKα under normoxia, they rapidly dissociate following prolyl-hydroxylation, leading to their immediate release from mitochondria. In contrast, hypoxia results in constant EglN1-AMPKα interaction and their accumulation on mitochondria, leading to the formation of a Ca2+ /calmodulin-dependent protein kinase 2 (CaMKK2)-EglN1-AMPKα complex to activate AMPKα phosphorylation, ensuring metabolic homeostasis and breast tumor growth. Our findings identify EglN1 as an oxygen-sensitive metabolic checkpoint signaling hypoxic stress to mitochondria through its ß2ß3 loop region, suggesting a potential therapeutic target for breast cancer.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias da Mama , Feminino , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Proteômica
2.
J Transl Med ; 22(1): 171, 2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38368374

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has shown remarkable responses in hematological malignancies with several approved products, but not in solid tumors. Patients suffer from limited response and tumor relapse due to low efficacy of CAR-T cells in the complicated and immunosuppressive tumor microenvironment. This clinical challenge has called for better CAR designs and combined strategies to improve CAR-T cell therapy against tumor changes. METHODS: In this study, IL-15/IL-15Rα was inserted into the extracellular region of CAR targeting mesothelin. In-vitro cytotoxicity and cytokine production were detected by bioluminescence-based killing and ELISA respectively. In-vivo xenograft mice model was used to evaluate the anti-tumor effect of CAR-T cells. RNA-sequencing and online database analysis were used to identify new targets in residual gastric cancer cells after cytotoxicity assay. CAR-T cell functions were detected in vitro and in vivo after GLI Pathogenesis Related 1 (GLIPR1) knockdown in gastric cancer cells. Cell proliferation and migration of gastric cancer cells were detected by CCK-8 and scratch assay respectively after GLIPR1 were overexpressed or down-regulated. RESULTS: CAR-T cells constructed with IL-15/IL-15Rα (CAR-ss-T) showed significantly improved CAR-T cell expansion, cytokine production and cytotoxicity, and resulted in superior tumor control compared to conventional CAR-T cells in gastric cancer. GLIPR1 was up-regulated after CAR-T treatment and survival was decreased in gastric cancer patients with high GLIPR1 expression. Overexpression of GLIPR1 inhibited cytotoxicity of conventional CAR-T but not CAR-ss-T cells. CAR-T treatment combined with GLIPR1 knockdown increased anti-tumor efficacy in vitro and in vivo. CONCLUSIONS: Our data demonstrated for the first time that this CAR structure design combined with GLIPR1 knockdown in gastric cancer improved CAR-T cell-mediated anti-tumor response.


Assuntos
Receptores de Antígenos Quiméricos , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/metabolismo , Imunoterapia Adotiva/métodos , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto , Microambiente Tumoral , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo
3.
Acta Biochim Biophys Sin (Shanghai) ; 54(11): 1708-1719, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36017889

RESUMO

Adenocarcinoma is the second largest histological type of cervical cancer, second only to cervical squamous cell carcinoma. At present, despite the clinical treatment strategies of cervical adenocarcinoma and cervical squamous cell carcinoma being similar, the outcome and prognosis of cervical adenocarcinoma are significantly poor. Therefore, it is urgent to find specific biomarker and therapeutic target for cervical adenocarcinoma. In this study, we aim to reveal and verify the potential biomarkers and therapeutic targets of cervical adenocarcinoma. Weighted correlation network analysis (WGCNA) reveals the differentially-expressed genes significantly related to the histological characteristics of the two cervical cancer subtypes. We select the genes with the top 20 significance for further investigation. Through microarray and immunohistochemical (IHC) analyses of a variety of tumor tissues, we find that among these 20 genes, AHNAK2 is highly expressed not only in cervical adenocarcinoma, but also in multiple of adenocarcinoma tissues, including esophagus, breast and colon, while not in normal gland tissues. In vitro, AHNAK2 knockdown significantly inhibits cell proliferation and migration of adenocarcinoma cell lines. In vivo, AHNAK2 knockdown significantly inhibits tumor progression and metastasis of various adenocarcinomas. RNA-sequencing and bioinformatics analyses suggest that the inhibitory effect of AHNAK2 knockdown on tumor progression is achieved by regulating DNA replication and upregulating Bim expression. Together, we demonstrate that AHNAK2 is a biomarker and a potential therapeutic target for adenocarcinomas.


Assuntos
Adenocarcinoma , Biomarcadores Tumorais , Carcinoma de Células Escamosas , Terapia de Alvo Molecular , Neoplasias do Colo do Útero , Feminino , Humanos , Adenocarcinoma/tratamento farmacológico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
4.
Genes Dev ; 28(20): 2205-18, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25260709

RESUMO

Signals from the niche play pivotal roles in regulating adult stem cell self-renewal. Previous studies indicated that the steroid hormones can expand mammary stem cells (MaSCs) in vivo. However, the facilitating local niche factors that directly contribute to the MaSC expansion remain unclear. Here we identify R-spondin1 (Rspo1) as a novel hormonal mediator in the mammary gland. Pregnancy and hormonal treatment up-regulate Rspo1 expression. Rspo1 cooperates with another hormonal mediator, Wnt4, to promote MaSC self-renewal through Wnt/ß-catenin signaling. Knockdown of Rspo1 and Wnt4 simultaneously abolishes the stem cell reconstitution ability. In culture, hormonal treatment that stimulates the expression of both Rspo1 and Wnt4 can completely substitute for exogenous Wnt proteins, potently expand MaSCs, and maintain their full development potential in transplantation. Our data unveil the intriguing concept that hormones induce a collaborative local niche environment for stem cells.


Assuntos
Diferenciação Celular , Células-Tronco/citologia , Trombospondinas/metabolismo , Animais , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos BALB C , Transdução de Sinais , Trombospondinas/genética , Regulação para Cima , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
5.
J Mammary Gland Biol Neoplasia ; 26(3): 309-320, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34374886

RESUMO

Mammary gland development primarily occurs postnatally, and this unique process is complex and regulated by systemic hormones and local growth factors. The mammary gland is also a highly dynamic organ that undergoes profound changes at puberty and during the reproductive cycle. These changes are driven by mammary stem cells (MaSCs). Breast cancer is one of the most common causes of cancer-related death in women. Cancer stem cells (CSCs) play prominent roles in tumor initiation, drug resistance, tumor recurrence, and metastasis. The highly conserved Notch signaling pathway functions as a key regulator of the niche mediating mammary organogenesis and breast neoplasia. In this review, we discuss mechanisms by which Notch contributes to breast carcinoma pathology and suggest potentials for therapeutic targeting of Notch in breast cancer. In summary, we provide a comprehensive overview of Notch functions in regulating MaSCs, mammary development, and breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Carcinogênese/metabolismo , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/metabolismo , Receptores Notch/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Carcinogênese/patologia , Feminino , Humanos , Glândulas Mamárias Humanas/patologia , Transdução de Sinais , Células-Tronco/metabolismo , Células-Tronco/patologia
6.
Dev Biol ; 458(1): 43-51, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610144

RESUMO

The steroid hormones are instrumental for the growth of mammary epithelial cells. Our previous study indicates that hormones regulate the expression of Rspondin-1 (Rspo1). Yet, the regulatory mechanism remains unknown. In the current study, we identify Amphiregulin (Areg) as a novel upstream regulator of Rspo1 expression mediating the hormonal influence. In response to hormonal signaling, Areg emanating from estrogen receptor (ER)-positive luminal cells, induce the expression of Rspo1 in ER-negative luminal cells. The paracrine action of Areg on Rspo1 expression is dependent on Egfr. Our data reveal a novel Estrogen-Areg-Rspo1 regulatory axis in the mammary gland, providing new evidence for the orchestrated action of systemic hormones and local growth factors.


Assuntos
Anfirregulina/fisiologia , Estradiol/fisiologia , Ciclo Estral/fisiologia , Regulação da Expressão Gênica/fisiologia , Glândulas Mamárias Animais/metabolismo , Progesterona/fisiologia , Trombospondinas/biossíntese , Anfirregulina/genética , Animais , Células Cultivadas , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/fisiologia , Cloridrato de Erlotinib/farmacologia , Estradiol/farmacologia , Ciclo Estral/genética , Feminino , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Cultura Primária de Células , Progesterona/farmacologia , RNA Interferente Pequeno/genética , Trombospondinas/genética , Transcriptoma
7.
Nature ; 517(7532): 81-4, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25327250

RESUMO

The mammary gland is composed of multiple types of epithelial cells, which are generated by mammary stem cells (MaSCs) residing at the top of the hierarchy. However, the existence of these multipotent MaSCs remains controversial and the nature of such cells is unknown. Here we demonstrate that protein C receptor (Procr), a novel Wnt target in the mammary gland, marks a unique population of multipotent mouse MaSCs. Procr-positive cells localize to the basal layer, exhibit epithelial-to-mesenchymal transition characteristics, and express low levels of basal keratins. Procr-expressing cells have a high regenerative capacity in transplantation assays and differentiate into all lineages of the mammary epithelium by lineage tracing. These results define a novel multipotent mammary stem cell population that could be important in the initiation of breast cancer.


Assuntos
Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Células-Tronco Multipotentes/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem da Célula , Rastreamento de Células , Receptor de Proteína C Endotelial , Feminino , Técnicas de Introdução de Genes , Queratinas/metabolismo , Masculino , Camundongos , Células-Tronco Multipotentes/citologia , Regeneração
8.
PLoS Genet ; 14(2): e1007211, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29420538

RESUMO

The Th-inducing POK (Th-POK, also known as ZBTB7B or cKrox) transcription factor is a key regulator of lineage commitment of immature T cell precursors. It is yet unclear the physiological functions of Th-POK besides helper T cell differentiation. Here we show that Th-POK is restrictedly expressed in the luminal epithelial cells in the mammary glands that is upregulated at late pregnancy and lactation. Lineage restrictedly expressed Th-POK exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Th-POK is not required for mammary epithelial cell fate determination. Mammary gland morphogenesis in puberty and alveologenesis in pregnancy are phenotypically normal in the Th-POK-deficient mice. However, Th-POK-deficient mice are defective in triggering the onset of lactation upon parturition with large cellular lipid droplets retained within alveolar epithelial cells. As a result, Th-POK knockout mice are unable to efficiently secret milk lipid and to nurse the offspring. Such defect is mainly attributed to the malfunctioned mammary epithelial cells, but not the tissue microenvironment in the Th-POK deficient mice. Th-POK directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling. Th-POK deficiency compromises IRS-1 expression and Akt-mTOR-SREBP signaling in the lactating mammary glands. Conversely, insulin induces Th-POK expression. Thus, Th-POK functions as an important feed-forward regulator of insulin signaling in mammary gland lactation.


Assuntos
Lactação/genética , Glândulas Mamárias Animais/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular/genética , Células Epiteliais/fisiologia , Feminino , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Transdução de Sinais/genética
9.
PLoS Genet ; 12(5): e1006055, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27203244

RESUMO

Cyclin Y family can enhance Wnt/ß-catenin signaling in mitosis. Their physiological roles in mammalian development are yet unknown. Here we show that Cyclin Y-like 1 (Ccnyl1) and Cyclin Y (Ccny) have overlapping function and are crucial for mouse embryonic development and mammary stem/progenitor cell functions. Double knockout of Ccnys results in embryonic lethality at E16.5. In pubertal development, mammary terminal end buds robustly express Ccnyl1. Depletion of Ccnys leads to reduction of Lrp6 phosphorylation, hampering ß-catenin activities and abolishing mammary stem/progenitor cell expansion in vitro. In lineage tracing experiments, Ccnys-deficient mammary cells lose their competitiveness and cease to contribute to mammary development. In transplantation assays, Ccnys-deficient mammary cells fail to reconstitute, whereas constitutively active ß-catenin restores their regeneration abilities. Together, our results demonstrate the physiological significance of Ccnys-mediated mitotic Wnt signaling in embryonic development and mammary stem/progenitor cells, and reveal insights in the molecular mechanisms orchestrating cell cycle progression and maintenance of stem cell properties.


Assuntos
Ciclinas/genética , Desenvolvimento Embrionário/genética , Glândulas Mamárias Animais/metabolismo , Animais , Ciclo Celular/genética , Proliferação de Células/genética , Feminino , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Fosforilação , Gravidez , Regeneração/genética , Via de Sinalização Wnt/genética , beta Catenina/genética
10.
Acta Biochim Biophys Sin (Shanghai) ; 50(10): 996-1006, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239560

RESUMO

Acute myocardial infarction (AMI) is one of the major causes of morbidity and mortality in the world. Ischemia/reperfusion (I/R) injury-induced cardiomyocytes death is the main obstacle that limits the heart function recovery of the AMI patients. Reactive oxygen species (ROS) generated by mitochondria is the main pathological stimulus of cardiomyocytes death during heart I/R injury process. Hence, to understand the underlying mechanism of cardioymocytes proliferation and apoptosis under oxidative stress is crucial for effective AMI therapy. In this study, we found that the expression of long non-coding RNA HOTAIR was significantly downregulated in H9c2 cells in response to oxidative stimuli. HOTAIR knockdown further attenuated H9c2 cells proliferation and accelerated H9c2 cells apoptosis in oxidative stress, while HOTAIR overexpression can protect H9c2 cells from oxidative stress-induced injury. Additionally, HOTAIR acted as a sponge for miR-125. MiR-125 inhibitors restored the H9c2 cells proliferation and migration potential after HOTAIR knockdown in oxidative stress. Meanwhile, MMP2 was identified as a target of miR-125. MMP2 knockdown blocked miR-125 inhibitors' protect effect on H9c2 cells in oxidative stress. Further study demonstrated that HOTAIR inhibition can aggravate oxidative stress-induced H9c2 cells injury through HOTAIR/miR-125/MMP2 axis. Our finding revealed a novel regulatory mechanism for cardiomyocytes proliferation and apoptosis under oxidative stress conditions, which provided a therapeutic approach for myocardium repair after AMI injury.


Assuntos
Regulação da Expressão Gênica , Metaloproteinase 2 da Matriz/genética , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , Animais , Apoptose/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/genética , Regulação para Baixo , Metaloproteinase 2 da Matriz/metabolismo , Estresse Oxidativo/fisiologia , Interferência de RNA , Ratos , Transdução de Sinais/genética
11.
Acta Biochim Biophys Sin (Shanghai) ; 50(12): 1211-1218, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30371726

RESUMO

Excessive adiposity has long been proved to be associated with greater incidence and mortality of breast cancer in post-menopausal women. However, the effects and underlying mechanisms of human adipocytes on breast cancer cells remain largely unknown. In recent years, several reports have revealed the oncogenic role of long non-coding RNA PVT1 in breast cancer. Here, we aimed to investigate the role and underlying mechanisms of PVT1 in triple-negative breast cancer (TNBC) cells cultured with mature adipogenic medium. At first, we successfully induced adipogenic differentiation from human adipose-derived mesenchymal stem cells and collected the mature adipogenic medium to mimic excessive adiposity. Our results demonstrated that the mature adipogenic medium promoted the epithelial-mesenchymal transition, enhanced the cell viability and migration potential of TNBC cells. In addition, we proved that mature adipogenic medium affected the PVT1 expression and inhibition of the PVT1 disturbed the role of mature adipogenic medium in TNBC cells. Finally, we illustrated that repression of p21 restored the phenotype caused by PVT1 knockdown in TNBC cells treated with mature adipogenic medium. Taken together, our results demonstrated that PVT1 affected the role of mature adipogenic medium in TNBC cells via modulating p21 expression.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , RNA Longo não Codificante/genética , Adipogenia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Meios de Cultivo Condicionados/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Interferência de RNA , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
12.
J Mol Cell Biol ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740522

RESUMO

The mammary gland is a dynamic organ that undergoes significant changes at multiple stages of postnatal development. Although the roles of systemic hormones and microenvironmental cues in mammary homeostasis have been extensively studied, the influence of neural signals, particularly those from the sympathetic nervous system, remains poorly understood. Here, using a mouse mammary gland model, we delved into the regulatory role of sympathetic nervous signaling in the context of mammary stem cells and mammary development. Our findings revealed that depletion of sympathetic nerve signals results in defective mammary development during puberty, adulthood, and pregnancy, accompanied by a reduction in mammary stem cell number. Through in vitro three-dimensional culture and in vivo transplantation analyses, we demonstrated that the absence of sympathetic nerve signals hinders mammary stem cell self-renewal and regeneration, while activation of sympathetic nervous signaling promotes these capacities. Mechanistically, sympathetic nerve signals orchestrate mammary stem cell activity and mammary development through the ERK signaling pathway. Collectively, our study unveils the crucial roles of sympathetic nerve signals in sustaining mammary development and regulating mammary stem cell activity, offering a novel perspective on the involvement of the nervous system in modulating adult stem cell function and organ development.

13.
Stem Cell Res ; 77: 103421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636268

RESUMO

Peripheral blood mononuclear cell (PBMC) are recognized as a conveniently collected reprogramming resource. Several methods are available in academia to reprogram PBMC into induced pluripotent stem cells (iPSC). In this research, we reprogrammed PBMC of different genders by using non-integrative non-viral liposome electrotransfer containing the reprogramming factors OCT4, SOX2, KLF4, and c-MYC. The three obtained iPSC cell lines were karyotypically normal and showed significant tritiated differentiation potential in vitro and in vivo. Our study provided an efficient procedure for reprogramming PBMC into iPSC and obtained three well-functioning iPSC, that may contribute to advance personalized cell therapy in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fator 4 Semelhante a Kruppel , Leucócitos Mononucleares , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Masculino , Feminino , Diferenciação Celular , Reprogramação Celular , Linhagem Celular , Animais
14.
Cell Biosci ; 14(1): 40, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532459

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) hold immense promise for use in immunomodulation and regenerative medicine. However, their inherent heterogeneity makes it difficult to achieve optimal therapeutic outcomes for a specific clinical disease. Primed MSCs containing a certain cytokine can enhance their particular functions, thereby increasing their therapeutic potential for related diseases. Therefore, understanding the characteristic changes and underlying mechanisms of MSCs primed by various cytokines is highly important. RESULTS: In this study, we aimed to reveal the cellular heterogeneity, functional subpopulations, and molecular mechanisms of MSCs primed with IFN-γ, TNF-α, IL-4, IL-6, IL-15, and IL-17 using single-cell RNA sequencing (scRNA-seq). Our results demonstrated that cytokine priming minimized the heterogeneity of the MSC transcriptome, while the expression of MSC surface markers exhibited only slight changes. Notably, compared to IL-6, IL-15, and IL-17; IFN-γ, TNF-α, and IL-4 priming, which stimulated a significantly greater number of differentially expressed genes (DEGs). Functional analysis, which included Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, indicated that IFN-γ, TNF-α, and IL-4-primed hUC-MSCs are involved in interferon-mediated immune-related processes, leukocyte migration, chemotaxis potential, and extracellular matrix and cell adhesion, respectively. Moreover, an investigation of various biological function scores demonstrated that IFN-γ-primed hUC-MSCs exhibit strong immunomodulatory ability, TNF-α-primed hUC-MSCs exhibit high chemotaxis potential, and IL-4-primed hUC-MSCs express elevated amounts of collagen. Finally, we observed that cytokine priming alters the distribution of functional subpopulations of MSCs, and these subpopulations exhibit various potential biological functions. Taken together, our study revealed the distinct regulatory effects of cytokine priming on MSC heterogeneity, biological function, and functional subpopulations at the single-cell level. CONCLUSIONS: These findings contribute to a comprehensive understanding of the inflammatory priming of MSCs, paving the way for their precise treatment in clinical applications.

15.
NPJ Regen Med ; 8(1): 23, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130846

RESUMO

Adult stem cell niche is a special environment composed of a variety stromal cells and signals, which cooperatively regulate tissue development and homeostasis. It is of great interest to study the role of immune cells in niche. Here, we show that mammary resident macrophages regulate mammary epithelium cell division and mammary development through TNF-α-Cdk1/Cyclin B1 axis. In vivo, depletion of macrophages reduces the number of mammary basal cells and mammary stem cells (MaSCs), while increases mammary luminal cells. In vitro, we establish a three-dimensional culture system in which mammary basal cells are co-cultured with macrophages, and interestingly, macrophage co-culture promotes the formation of branched functional mammary organoids. Moreover, TNF-α produced by macrophages activates the intracellular PI3K/Cdk1/Cyclin B1 signaling in mammary cells, thereby maintaining the activity of MaSCs and the formation of mammary organoids. Together, these findings reveal the functional significance of macrophageal niche and intracellular PI3K/Cdk1/Cyclin B1 axis for maintaining MaSC activity and mammary homeostasis.

16.
Stem Cell Res ; 69: 103088, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37099933

RESUMO

Peripheral blood mononuclear cells (PBMCs) have been widely considered as a more convenient and almost unlimited reprogramming resource, while the reprogramming procedure and efficiency still need to be improved. We reprogrammed the PBMCs by using non-integrative non-viral vectors liposome electrotransfer containing the reprogramming factors OCT4, SOX2, KLF4, and c-MYC. The iPSC lines exhibited a normal karyotype with their corresponding PBMCs and exhibited significant cellular pluripotency. Teratoma formation assay revealed that the iPSCs we generated could differentiate into three embryonic germ layers. Our study provides a more effective procedure for peripheral blood monocyte reprogramming to iPSC, and promotes its future application.


Assuntos
Células-Tronco Pluripotentes Induzidas , Teratoma , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Reprogramação Celular , Leucócitos Mononucleares/metabolismo , Fator 4 Semelhante a Kruppel , Teratoma/metabolismo , Diferenciação Celular
17.
Metabolism ; 142: 155528, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842611

RESUMO

INTRODUCTION: Aging is characterized by progressive metabolic dyshomeostasis that increases morbidity and mortality. Solutions for optimizing healthy aging are challenged by lacking appropriate biomarkers. Moreover, druggable targets to rejuvenate the aging-associated metabolic phenotypes remain unavailable. METHODS: Proteomics analysis was performed in a cohort of young and elderly adults. Circulating levels of insulin-like growth factor 1 (IGF-1) and fatty acid binding protein 4 (FABP4) were evaluated by ELISA. FABP4 was silenced in elderly mice by adeno-associated virus. Metabolic activities were measured by metabolic cages. Cognitive function was evaluated by Morris water maze. Glucose and lipid metabolism were evaluated by biochemistry assays with blood samples. RNA-seq in mouse liver was performed for transcriptome analysis. RESULTS: Among 9 aging-sensitive proteins shared by both male and female, FABP4 was identified as a reliable aging biomarker in both human and mouse. Silencing FABP4 in elderly mice significantly rejuvenated the aging-associated decline in metabolic activities. FABP4 knockdown reversed the aging-associated metabolic disorders by promoting degradation of cholesterol and fatty acids, while suppressing gluconeogenesis. Transcriptome analysis revealed a restoration of the pro-aging gene reprogramming towards inflammation and metabolic disorders in the liver after FABP4 knockdown. FABP4 overexpression promoted human LO2 cell senescence. Moreover, administration of an FABP4 inhibitor BMS309403 delivered metabolic benefits in elderly mice. CONCLUSION: Our findings demonstrate FABP4 as a reliable aging biomarker as well as a practicable target to improve healthy aging in the elderly.


Assuntos
Fígado , Doenças Metabólicas , Adulto , Humanos , Masculino , Feminino , Animais , Camundongos , Idoso , Fígado/metabolismo , Metabolismo dos Lipídeos/genética , Biomarcadores/metabolismo , Doenças Metabólicas/metabolismo , Proteínas de Ligação a Ácido Graxo/genética
18.
J Mol Cell Biol ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442610

RESUMO

Estrogen receptor α (ERα) is an important driver and therapeutic target in approximately 70% of breast cancers. How ERα drives breast carcinogenesis is not fully understood. In this study, we show that ERα is a negative regulator of type I interferon (IFN) response, which is critical for breast carcinogenesis. Activation of ERα by its natural ligand estradiol inhibits IFN-ß-induced transcription of downstream IFN-stimulated genes (ISGs), whereas deficiency of ERα or stimulation with its antagonist fulvestrant has opposite effects. Mechanistically, ERα inhibits type I IFN response by two distinct mechanisms. ERα induces expression of the histone 2A variant H2A.Z, which restricts engagement of the IFN-stimulated gene factor 3 (ISGF3) complex at the ISG promoters. ERα also interacts with STAT2, which leads to disruption of the ISGF3 complex. These two events mutually lead to transcriptional inhibition of ISGs induced by type I IFNs. In a xenograft mouse tumor model, fulvestrant enhances the ability of IFN-ß to suppress ERα+ breast tumor growth. Consistently, clinical data suggests that ERα+ breast cancer patients with higher levels of ISGs exhibit an increased survival rate. Our findings suggest that ERα inhibits type I IFN response via two distinct mechanisms to promote breast cancer.

19.
Cell Death Dis ; 14(1): 66, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707501

RESUMO

Coronavirus disease 2019 (COVID-19) treatments are still urgently needed for critically and severely ill patients. Human umbilical cord-mesenchymal stem cells (hUC-MSCs) infusion has therapeutic benefits in COVID-19 patients; however, uncertain therapeutic efficacy has been reported in severe patients. In this study, we selected an appropriate cytokine, IL-18, based on the special cytokine expression profile in severe pneumonia of mice induced by H1N1virus to prime hUC-MSCs in vitro and improve the therapeutic effect of hUC-MSCs in vivo. In vitro, we demonstrated that IL-18-primed hUC-MSCs (IL18-hUCMSC) have higher proliferative ability than non-primed hUC-MSCs (hUCMSCcon). In addition, VCAM-1, MMP-1, TGF-ß1, and some chemokines (CCL2 and CXCL12 cytokines) are more highly expressed in IL18-hUCMSCs. We found that IL18-hUCMSC significantly enhanced the immunosuppressive effect on CD3+ T-cells. In vivo, we demonstrated that IL18-hUCMSC infusion could reduce the body weight loss caused by a viral infection and significantly improve the survival rate. Of note, IL18-hUCMSC can also significantly attenuate certain clinical symptoms, including reduced activity, ruffled fur, hunched backs, and lung injuries. Pathologically, IL18-hUCMSC transplantation significantly enhanced the inhibition of inflammation, viral load, fibrosis, and cell apoptosis in acute lung injuries. Notably, IL18-hUCMSC treatment has a superior inhibitory effect on T-cell exudation and proinflammatory cytokine secretion in bronchoalveolar lavage fluid (BALF). Altogether, IL-18 is a promising cytokine that can prime hUC-MSCs to improve the efficacy of precision therapy against viral-induced pneumonia, such as COVID-19.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Pneumonia Viral , Humanos , Camundongos , Animais , Interleucina-18/metabolismo , Cordão Umbilical/metabolismo , Linfócitos T/metabolismo , COVID-19/metabolismo , Citocinas/metabolismo , Pneumonia Viral/terapia , Pneumonia Viral/metabolismo , Terapia de Imunossupressão , Células-Tronco Mesenquimais/metabolismo
20.
Elife ; 122023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589705

RESUMO

N6-methyladenosine (m6A) methylation of RNA by the methyltransferase complex (MTC), with core components including METTL3-METTL14 heterodimers and Wilms' tumor 1-associated protein (WTAP), contributes to breast tumorigenesis, but the underlying regulatory mechanisms remain elusive. Here, we identify a novel cleaved form METTL3a (residues 239-580 of METTL3). We find that METTL3a is required for the METTL3-WTAP interaction, RNA m6A deposition, as well as cancer cell proliferation. Mechanistically, we find that METTL3a is essential for the METTL3-METTL3 interaction, which is a prerequisite step for recruitment of WTAP in MTC. Analysis of m6A sequencing data shows that depletion of METTL3a globally disrupts m6A deposition, and METTL3a mediates mammalian target of rapamycin (mTOR) activation via m6A-mediated suppression of TMEM127 expression. Moreover, we find that METTL3 cleavage is mediated by proteasome in an mTOR-dependent manner, revealing positive regulatory feedback between METTL3a and mTOR signaling. Our findings reveal METTL3a as an important component of MTC, and suggest the METTL3a-mTOR axis as a potential therapeutic target for breast cancer.


Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Metiltransferases , Fatores de Processamento de RNA , Humanos , Proteínas de Ciclo Celular/genética , Transformação Celular Neoplásica , Citoplasma , Metiltransferases/genética , RNA , Fatores de Processamento de RNA/genética , Neoplasias da Mama/patologia , Progressão da Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA