RESUMO
Insects represent the most diverse animal group, yet previous phylogenetic analyses based on morphological and molecular data have failed to agree on the evolutionary relationships of early insects and their six-legged relatives (together constituting the clade Hexapoda). In particular, the phylogenetic positions of the three early-diverging hexapod lineages-the coneheads (Protura), springtails (Collembola), and two-pronged bristletails (Diplura)-have been debated for over a century, with alternative topologies implying drastically different scenarios of the evolution of the insect body plan and hexapod terrestrialization. We addressed this issue by sampling all hexapod orders and experimenting with a broad range of across-site compositional heterogeneous models designed to tackle ancient divergences. Our analyses support Protura as the earliest-diverging hexapod lineage ("Protura-sister") and Collembola as a sister group to Diplura, a clade corresponding to the original composition of Entognatha, and characterized by the shared possession of internal muscles in the antennal flagellum. The previously recognized 'Elliplura' hypothesis is recovered only under the site-homogeneous substitution models with partial supermatrices. Our cross-validation analysis shows that the site-heterogeneous CAT-GTR model, which recovers "Protura-sister," fits significantly better than homogeneous models. Furthermore, the morphologically unusual Protura are also supported as the earliest-diverging hexapod lineage by other lines of evidence, such as mitogenomes, comparative embryology, and sperm morphology, which produced results similar to those in this study. Our backbone phylogeny of hexapods will facilitate the exploration of the underpinnings of hexapod terrestrialization and megadiversity.
Assuntos
Insetos , Filogenia , Animais , Insetos/classificação , Insetos/genética , Insetos/anatomia & histologia , Evolução Biológica , Artrópodes/classificação , Artrópodes/genética , Artrópodes/anatomia & histologiaRESUMO
Capacitive deionization (CDI), renowned for its eco-friendly and low-energy approach to water treatment, encounters challenges in achieving optimal deionization efficiency and cycle stability despite recent advancements. In this study, the CDI electrodes were crafted with multilevel pore structures using modified cellulose (MCNF) and porous activated MXene (PAMX), aiming to the impact of surface modification on adsorption efficiency, stability, and overall performance. The experimental results demonstrated the superiority of the electrode, specifically the formulation integrating sulfonic acid-treated cellulose and PAMX (SCNF@PAMX). This configuration exhibited remarkably a higher desalination rate (3.91 mg·g-1·min-1) and enhanced desalination capacity (31.24 mg·g-1), with cycling performance exceeding 90%. Density functional theory calculations underscored the formidable adsorption energy of SCNF for Na+ (2.15 eV), surpassing that of other modified electrodes. The enhancement of deionization performance and efficiency through surface charge modification, altering Na+ electrostatic adsorption, lays a solid foundation for advancing more efficient and durable seawater desalination technologies.
RESUMO
Fossilized mating insects are irreplaceable material for comprehending the evolution of the mating behaviours and life-history traits in the deep-time record of insects as well as the potential sexual conflict. However, cases of mating pairs are particularly rare in fossil insects, especially aquatic or semi-aquatic species. Here, we report the first fossil record of a group of water striders in copulation (including three pairs and a single adult male) based on fossils from the mid-Cretaceous of northern Myanmar. The new taxon, Burmogerris gen. nov., likely represents one of the oldest cases of insects related to the marine environment, such as billabongs formed by the tides. It exhibits conspicuous dimorphism associated with sexual conflict: the male is equipped with a specialized protibial comb as a grasping apparatus, likely representing an adaptation to overcome female resistance during struggles. The paired Burmogerris show smaller males riding on the backs of the females, seemingly recording a scene of copulatory struggles between the sexes. Our discovery reveals a mating system dominated by males and sheds light on the potential sexual conflicts of Burmogerris in the Cretaceous. It indicates the mating behaviour remained stable over long-term geological time in these water-walking insects.
Assuntos
Âmbar , Características de História de Vida , Animais , Feminino , Masculino , Insetos , Reprodução , Copulação , Fósseis , MianmarRESUMO
The beetle superfamily Elateroidea comprises the most biodiverse bioluminescent insects among terrestrial light-producing animals. Recent exceptional fossils from the Mesozoic era and phylogenomic studies have provided valuable insights into the origin and evolution of bioluminescence in elateroids. However, due to the fragmentary nature of the fossil record, the early evolution of bioluminescence in fireflies (Lampyridae), one of the most charismatic lineages of insects, remains elusive. Here, we report the discovery of the second Mesozoic bioluminescent firefly, Flammarionella hehaikuni Cai, Ballantyne & Kundrata gen. et sp. nov., from the Albian/Cenomanian of northern Myanmar (ca 99 Ma). Based on the available set of diagnostic characters, we interpret the specimen as a female of stem-group Luciolinae. The fossil possesses deeply impressed oval pits on the apices of antennomeres 3-11, representing specialized sensory organs likely involved in olfaction. The light organ near the abdominal apex of Flammarionella resembles that found in extant light-producing lucioline fireflies. The growing fossil record of lampyrids provides direct evidence that the stunning light displays of fireflies were already established by the late Mesozoic.
Assuntos
Vaga-Lumes , Fósseis , Animais , Feminino , Mianmar , Antenas de Artrópodes , Luminescência , Filogenia , Evolução BiológicaRESUMO
The oxygen evolution reaction (OER), which occurs in a variety of energy-related devices, necessitates optimization of the reaction pathways for efficient and scalable deployment. Nevertheless, fully harnessing the advanced structure of synthetic electrocatalysts remains a significant challenge due to the inevitable surface reconstruction process during OER. Here we present an efficient and flexible method to control the surface reconstruction process by engineering an electrolyte containing trace Co2+ cation. This controllable reconstruction process enhances fast charge transfer, facilitates electroactive species transport, and exposes the inner active site, significantly improving the OER kinetics. An impressive 60% increase in current density at an applied potential of 2.2 V (vs RHE) confirms its remarkable contribution to the performance. The identification of cation-triggered reconstruction for the formation of a well-defined surface provides a novel insight into understanding electrolyte engineering and offers a viable pathway to address activity and stable concerns in electrocatalysts.
RESUMO
Polysulfides huttling and interfacial instability of Lithium-anode are the main technical issues hindering commercialization of high-energy-density lithium-sulfur batteries. Simply addressing the problem of polysulfide shuttling or lithium dendrite growth can result in safety hazards or short lifespan. To synchronously tackle the aforementioned issues, the authors have designed an asymmetric cellulose gel electrolyte, a defective and ionized UiO66/black phosphorus heterostructure coating layer (Di-UiO66/BP) and a cationic cellulose gelelectrolyte (QACA). Defective and ionized engineered UiO66 particles significantly enhances performance of UiO66/BP layer in anchoring free polysulfides, promoting smooth and effective polysulfide conversion and expediting the redox kinetics of sulfur cathode, therefore suppressing polysulfide shuttling. QACA electrolyte with numerous cationic groups can interact with anions via electrostatic adsorption, thus enhancing lithium-ion transference number and contributing to formation of stable solid electrolyte interface to suppress lithium dendrite growth. Owing to the superior performance of QACA/Di-UiO66/BP, the final cells exhibit outstanding electrochemical performance, presenting high sulfur utilization (1420.1 mAh g-1 at 0.1 C), high-rate capacity (665.4 mAh g-1 at 4 C) and long cycle lifespan. This work proposes a strategy of designing asymmetric electrolytes to simultaneously address the challenges in both S-cathode and Li-anode, which contributes to advanced Li-S batteries and their practical application.
RESUMO
Eutectic Gallium-Indium (EGaIn) liquid metal is an emerging phase change metal material, but its low phase transition enthalpy and low light absorption limit its application in photothermal phase change energy storage materials (PCMs) field. Here, based on the dipole layer mechanism, stearic acid (STA)-EGaIn-based PCMs which exhibit extraordinary solar-thermal performance and phase change enthalpy are fabricated by ball milling method. The wood lamella-inspired cellulose-derived aerogel and molybdenum disulfide (MoS2 ) are used to support the PCMs by the capillary force and decrease the interfacial thermal resistance. The resulted PCMs achieved excellent photothermal conversion performance and leakage proof. They have excellent thermal conductivity of 0.31 W m-1 K-1 (this is increased by 138% as compared with pure STA), and high phase change enthalpy of187.50 J g-1 , which is higher than the most of the reported PCMs. Additionally, the thermal management system and infrared stealth materials based on the PCMs are developed. This work provides a new way to fabricate smart EGaIn-based PCMs for energy storage device thermal management and infrared stealth.
RESUMO
Soil has become a major hotspot of biodiversity studies, yet the pattern and timing of the evolution of soil organisms are poorly known because of the scarcity of paleontological data. To overcome this limitation, we conducted a genome-based macroevolutionary study of an ancient, diversified, and widespread lineage of soil fauna, the elongate-bodied springtails (class Collembola, order Entomobryomorpha). To build the first robust backbone phylogeny of this previously refractory group, we sampled representatives of major higher taxa (6 out of 8 families, 11 out of 16 subfamilies) of the order with an emphasis on the most problematic superfamily Tomoceroidea, applied whole-genome sequencing methods, and compared the performance of different combinations of data sets (universal single-copy orthologs [USCO] vs. ultraconserved elements]) and modeling schemes. The fossil-calibrated timetree was used to reconstruct the evolution of body size, sensory organs, and pigmentation to establish a time frame of the ecomorphological divergences. The resultant trees based on different analyses were congruent in most nodes. Several discordant nodes were carefully evaluated by considering method fitness, morphological information, and topology test. The evaluation favored the well-resolved topology from analyses using USCO amino acid matrices and complex site-heterogeneous models (CAT$+$GTR and LG$+$PMSF (C60)). The preferred topology supports the monophyletic superfamily Tomoceroidea as an early-diverging lineage and a sister relationship between Entomobryoidea and Isotomoidea. The family Tomoceridae was recovered as monophyletic, whereas Oncopoduridae was recovered as paraphyletic, with Harlomillsia as a sister to Tomoceridae and hence deserving a separate family status as Harlomillsiidae Yu and Zhang fam. n. Ancestral Entomobryomorpha were reconstructed as surface-living, supporting independent origins of soil-living groups across the Paleozoic-Mesozoic, and highlighting the ancient evolutionary interaction between aboveground and belowground fauna. [Collembola; phylogenomics; soil-living adaptation; whole-genome sequencing.].
Assuntos
Artrópodes , Animais , Ecossistema , Fósseis , Filogenia , SoloRESUMO
Weevils represent one of the most prolific radiations of beetles and the most diverse group of herbivores on land. The phylogeny of weevils (Curculionoidea) has received extensive attention, and a largely satisfactory framework for their interfamilial relationships has been established. However, a recent phylogenomic study of Curculionoidea based on anchored hybrid enrichment (AHE) data yielded an abnormal placement for the family Belidae (strongly supported as sister to Nemonychidae + Anthribidae). Here we reanalyse the genome-scale AHE data for Curculionoidea using various models of molecular evolution and data filtering methods to mitigate anticipated systematic errors and reduce compositional heterogeneity. When analysed with the infinite mixture model CAT-GTR or using appropriately filtered datasets, Belidae are always recovered as sister to the clade (Attelabidae, (Caridae, (Brentidae, Curculionidae))), which is congruent with studies based on morphology and other sources of molecular data. Although the relationships of the 'higher Curculionidae' remain challenging to resolve, we provide a consistent and robust backbone phylogeny of weevils. Our extensive analyses emphasize the significance of data curation and modelling across-site compositional heterogeneity in phylogenomic studies.
Assuntos
Besouros , Gorgulhos , Animais , Gorgulhos/genética , Filogenia , Curadoria de Dados , Evolução MolecularRESUMO
A passive cooling strategy without any electricity input has shown a significant impact on overall energy consumption globally. However, designing tunable daytime radiative cooler to meet requirement of different weather conditions is still a big challenge, especially in hot, humid regions. Here, a novel type of tunable, thermally insulating and compressible cellulose nanocrystal (CNC) aerogel coolers is prepared via chemical cross-linking and unidirectional freeze casting process. Such aerogel coolers can achieve a subambient temperature drop of 9.2 °C under direct sunlight and promisingly reached the reduction of â¼7.4 °C even in hot, moist, and fickle extreme surroundings. The tunable cooling performance can be realized via controlling the compression ratio of shape-malleable aerogel coolers. Furthermore, energy consumption modeling of using such aerogel coolers in buildings in China shows 35.4% reduction of cooling energy. This work can pave the way toward designing high-performance, thermal-regulating materials for energy consumption savings.
Assuntos
Celulose , Temperatura Baixa , Celulose/química , Transição de Fase , Fenômenos Físicos , TemperaturaRESUMO
The simple design of a high-energy-density device with high-mass-loading electrode has attracted much attention but is challenging. Manganese oxide (MnO2 ) with its low cost and excellent electrochemical performance shows high potential for practical application in this regard. Hence, the high-mass-loading of the MnO2 electrode with wood-derived carbon (WC) as the current collector is reported through a convenient hydrothermal reaction for high-energy-density devices. Benefiting from the high-mass-loading of the MnO2 electrode (WC@MnO2 -20, ≈14.1 mg cm-2 ) and abundant active sites on the surface of the WC hierarchically porous structure, the WC@MnO2 -20 electrode shows remarkable high-rate performance of areal/specific capacitance ≈1.56 F cm-2 /45 F g-1 , compared to the WC electrode even at the high density of 20 mA cm-2 . Furthermore, the obtained symmetric supercapacitor exhibits high areal/specific capacitances of 3.62 F cm-2 and 87 F g-1 at 1.0 mA cm-2 and high energy densities of 0.502 mWh cm-2 /12.2 Wh kg-1 with capacitance retention of 75.2% after 10 000 long-term cycles at 20 mA cm-2 . This result sheds light on a feasible design strategy for high-energy-density supercapacitors with the appropriate mass loading of active materials and low-tortuosity structural design while also encouraging further investigation into electrochemical storage.
RESUMO
Brood care enhances offspring fitness and survival by providing protection or feeding through parents (commonly by females). It has evolved independently multiple times in animals, e.g. mammals, birds, dinosaurs and arthropods, especially various lineages of insects, and has significant implications for understanding the emergence of sociality of insects. However, few fossil insects document such an ephemeral behaviour directly. New exceptional fossils of the water boatman Karataviella popovi from the Middle-Late Jurassic Daohugou biota (ca 163.5 Ma, northeastern China), with adult females bearing clutches of eggs on their left mesotibia, provide a unique brooding strategy (asymmetric egg-carrying behaviour) unknown in all extinct and extant insects. Our discovery represents the earliest direct evidence of brood care among insects, pushing back by more than 38 million years, indicating that relevant adaptations associated with maternal investment of insects can be traced back to at least the Middle-Late Jurassic, and highlighting the existence of diverse brooding strategies in Mesozoic insects. In addition, our discovery reveals that a specialized trawl-like filter-capture apparatus of K. popovi probably represents pre-adaptions originally used for trapping coeval anostracan (fairy shrimp) eggs for food.
Assuntos
Artrópodes , Dinossauros , Animais , China , Feminino , Fósseis , Insetos , MamíferosRESUMO
Safflower seed oil (SSO) is considered to be an excellent edible oil since it contains abundant essential unsaturated fatty acids and lipid concomitants. However, the traditional alkali-refined deacidification process of SSO results in a serious loss of bioactive components of the oil and also yields massive amounts of wastewater. In this study, SSO was first extracted by ultrasonic-assisted ethanol extraction (UAEE), and the extraction process was optimized using random centroid optimization. By exploring the effects of ethanol concentration, solid−liquid ratio, ultrasonic time, and the number of deacidification times, the optimum conditions for the deacidification of safflower seed oil were obtained as follows: ethanol concentration 100%, solid−liquid ratio 1:4, ultrasonic time 29 min, and number of deacidification cycles (×2). The deacidification rate was 97.13% ± 0.70%, better than alkali-refining (72.16% ± 0.13%). The values of acid, peroxide, anisidine and total oxidation of UAEE-deacidified SSO were significantly lower than those of alkali-deacidified SSO (p < 0.05). The contents of the main lipid concomitants such as tocopherols, polyphenols, and phytosterols in UAEE-decidified SSO were significantly higher than those of the latter (p < 0.05). For instance, the DPPH radical scavenging capacity of UAEE-processed SSO was significantly higher than that of alkali refining (p < 0.05). The Pearson bivariate correlation analysis before and after the deacidification process demonstrated that the three main lipid concomitants in SSO were negatively correlated with the index of peroxide, anisidine, and total oxidation values. The purpose of this study was to provide an alternative method for the deacidification of SSO that can effectively remove free fatty acids while maintaining the nutritional characteristics, physicochemical properties, and antioxidant capacity of SSO.
Assuntos
Carthamus tinctorius , Álcalis , Carthamus tinctorius/química , Etanol/química , Peróxidos , Óleos de Plantas/química , Óleo de Cártamo , Tecnologia , UltrassomRESUMO
Bioluminescent beetles of the superfamily Elateroidea (fireflies, fire beetles, glow-worms) are the most speciose group of terrestrial light-producing animals. The evolution of bioluminescence in elateroids is associated with unusual morphological modifications, such as soft-bodiedness and neoteny, but the fragmentary nature of the fossil record discloses little about the origin of these adaptations. We report the discovery of a new bioluminescent elateroid beetle family from the mid-Cretaceous of northern Myanmar (ca 99 Ma), Cretophengodidae fam. nov. Cretophengodes azari gen. et sp. nov. belongs to the bioluminescent lampyroid clade, and would appear to represent a transitional fossil linking the soft-bodied Phengodidae + Rhagophthalmidae clade and hard-bodied elateroids. The fossil male possesses a light organ on the abdomen which presumably served a defensive function, documenting a Cretaceous radiation of bioluminescent beetles coinciding with the diversification of major insectivore groups such as frogs and stem-group birds. The discovery adds a key branch to the elateroid tree of life and sheds light on the evolution of soft-bodiedness and the historical biogeography of elateroid beetles.
Assuntos
Besouros , Animais , Besouros/genética , Vaga-Lumes , Fósseis , Masculino , Mianmar , FilogeniaRESUMO
Within the hyperdiverse beetle family Staphylinidae, Dasycerinae is one of the smallest and most cryptic subfamilies, comprising a sole extant genus characterized by a latridiid beetle-like body form. Little has been known about their early diversification, character evolution, phylogeny and historical biogeography because of limited fossil material and lack of a phylogeny integrating extant and extinct representatives. Here we report an unexpectedly diverse dasycerine fauna from the mid-Cretaceous of northern Myanmar, including a new genus and four new species. To reconstruct the early evolutionary history of Dasycerinae, we present a phylogenetic framework of the subfamily based on a dataset integrating all extant and extinct taxa using parsimony, maximum-likelihood and Bayesian methods. Cedasyrus gen. n., characterized by distinct sexual dimorphism in antennal and elytral lengths, is recovered as the basal-most lineage, sister to the remaining two extinct genera and all living Dasycerus species. Vetudasycerus is recovered as sister to Protodasycerus + Dasycerus. Among all extinct taxa, Protodasycerus bears distinctly longer elytra, and appears to represent a transitional form from Vetudasycerus to Dasycerus. Phylogenetic inferences and ancestral distribution reconstruction support an "Out-of-Orient" model for Dasycerinae. Either the Bering- or North Atlantic Land Bridge may have served as a passageway for dasycerine dispersal between Eurasian and North American continents. An elevation-reconstruction analysis indicated that the ancestor of the extant Dasycerus probably lived at a high altitude and stayed at this elevation through the end of the Miocene. We propose that the extinction of dasycerine ancestors living on the Tethyan islands at low altitude was likely caused by sea-level rise and climatic warming during the Late Cretaceous. The high-altitude areas might have played the role of refugia that harboured subalpine derivatives which eventually gave rise to the extant Dasycerus.
Assuntos
Besouros/anatomia & histologia , Animais , Teorema de Bayes , Evolução Biológica , Besouros/classificação , Fósseis , Mianmar , Filogenia , Filogeografia , Caracteres SexuaisRESUMO
Structural colours, nature's most pure and intense colours, originate when light is scattered via nanoscale modulations of the refractive index. Original colours in fossils illuminate the ecological interactions among extinct organisms and functional evolution of colours. Here, we report multiple examples of vivid metallic colours in diverse insects from mid-Cretaceous amber. Scanning and transmission electron microscopy revealed a smooth outer surface and five alternating electron-dense and electron-lucent layers in the epicuticle of a fossil wasp, suggesting that multilayer reflectors, the most common biophotonic nanostructure in animals and even plants, are responsible for the exceptional preservation of colour in amber fossils. Based on theoretical modelling of the reflectance spectra, a reflective peak of wavelength of 514 nm was calculated, corresponding to the bluish-green colour observed under white light. The green to blue structural colours in fossil wasps, beetles and a fly most likely functioned as camouflage, although other functions such as thermoregulation cannot be ruled out. This discovery not only provides critical evidence of evolution of structural colours in arthropods, but also sheds light on the preservation potential of nanostructures of ancient animals through geological time.
Assuntos
Evolução Biológica , Cor , Insetos , Âmbar , Animais , Artrópodes , Fósseis , PlantasRESUMO
Diving beetles and their allies are an almost ubiquitous group of freshwater predators. Knowledge of the phylogeny of the adephagan superfamily Dytiscoidea has significantly improved since the advent of molecular phylogenetics. However, despite recent comprehensive phylogenomic studies, some phylogenetic relationships among the constituent families remain elusive. In particular, the position of the family Hygrobiidae remains uncertain. We address these issues by re-analyzing recently published phylogenomic datasets for Dytiscoidea, using approaches to reduce compositional heterogeneity and adopting a site-heterogeneous mixture model. We obtained a consistent, well-resolved, and strongly supported tree. Consistent with previous studies, our analyses support Aspidytidae as the monophyletic sister group of Amphizoidae, and more importantly, Hygrobiidae as the sister of the diverse Dytiscidae, in agreement with morphology-based phylogenies. Our analyses provide a backbone phylogeny of Dytiscoidea, which lays the foundation for better understanding the evolution of morphological characters, life habits, and feeding behaviors of dytiscoid beetles.
Assuntos
Besouros/classificação , Besouros/genética , Curadoria de Dados , Heterogeneidade Genética , Filogenia , Aminoácidos/genética , Animais , Teorema de Bayes , Modelos GenéticosRESUMO
New Zealand is an island continent that completed its split from the Gondwanan continent at 52 Ma, harbouring an iconic biota of tuatara, kiwi and weta. The sooty mould community is a distinctive trophic element of New Zealand forest ecosystems that is driven by plant-feeding sternorrhynchan Hemiptera. These produce honeydew, which supports fungal growth, which in turn supports numerous endemic invertebrates, including endemic New Zealand beetle families. Ancient New Zealand insect fossils are rare but a single fossil of a sooty mould cyclaxyrid was recently described from Cretaceous Burmese amber, a family that was previously known from two extant New Zealand species. Well-preserved fossils like this one are recasting Earth history, and, based on a wealth of additional specimens, we re-evaluate the taxonomy of Cretaceous cyclaxyrids and one Eocene species here transferred to Cyclaxyridae. Cyclaxyridae are highly tied to the sooty mould community and have now been discovered to occur in disparate biogeographic realms in deep time. Our discovery indicates that the family, and perhaps the sooty mould community in general, was widespread in Pangaea from at least the Cretaceous and survived as a relict in New Zealand. Persistence of a sooty mould ecosystem in New Zealand and fungal specialization may not necessarily be an evolutionary 'dead-end' for cyclaxyrids and other insects.
Assuntos
Evolução Biológica , Besouros , Animais , Ecossistema , Fósseis , Nova ZelândiaRESUMO
The origin and early evolutionary history of polyphagan beetles have been largely based on evidence from the derived and diverse 'core Polyphaga', whereas little is known about the species-poor basal polyphagan lineages, which include Scirtoidea (Clambidae, Decliniidae, Eucinetidae, and Scirtidae) and Derodontidae. Here, we report two new species Acalyptomerus thayerae sp. nov. and Sphaerothorax uenoi sp. nov., both belonging to extant genera of Clambidae, from mid-Cretaceous Burmese amber. Acalyptomerus thayerae has a close affinity to A. herbertfranzi, a species currently occurring in Mesoamerica and northern South America. Sphaerothorax uenoi is closely related to extant species of Sphaerothorax, which are usually collected in forests of Nothofagus of Australia, Chile, and New Zealand. The discovery of two Cretaceous species from northern Myanmar indicates that both genera had lengthy evolutionary histories, originated at least by the earliest Cenomanian, and were probably more widespread than at present. Remarkable morphological similarities between fossil and living species suggest that both genera changed little over long periods of geological time. The long-term persistence of similar mesic microhabitats such as leaf litter may account for the 99 Myr morphological stasis in Acalyptomerus and Sphaerothorax. Additionally, the extinct staphylinoid family Ptismidae is proposed as a new synonym of Clambidae, and its only included species Ptisma zasukhae is placed as incertae sedis within Clambidae.
Assuntos
Distribuição Animal , Evolução Biológica , Besouros/anatomia & histologia , Fósseis/anatomia & histologia , Âmbar , Animais , Besouros/fisiologia , Masculino , MianmarRESUMO
The species of the Strashilidae (strashilids) have been the most perplexing of fossil insects from the Jurassic period of Russia and China. They have been widely considered to be ectoparasites of pterosaurs or feathered dinosaurs, based on the putative presence of piercing and sucking mouthparts and hind tibio-basitarsal pincers purportedly used to fix onto the host's hairs or feathers. Both the supposed host and parasite occur in the Daohugou beds from the Middle Jurassic epoch of China (approximately 165 million years ago). Here we analyse the morphology of strashilids from the Daohugou beds, and reach markedly different conclusions; namely that strashilids are highly specialized flies (Diptera) bearing large membranous wings, with substantial sexual dimorphism of the hind legs and abdominal extensions. The idea that they belong to an extinct order is unsupported, and the lineage can be placed within the true flies. In terms of major morphological and inferred behavioural features, strashilids resemble the recent (extant) and relict members of the aquatic fly family Nymphomyiidae. Their ontogeny are distinguished by the persistence in adult males of larval abdominal respiratory gills, representing a unique case of paedomorphism among endopterygote insects. Adult strashilids were probably aquatic or amphibious, shedding their wings after emergence and mating in the water.