Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569788

RESUMO

Following the success of our previous edition [...].


Assuntos
Plantas , Estresse Fisiológico
2.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835118

RESUMO

The aim of this Special Issue is to highlight the molecular dialogue between the pollen tube and the pistil [...].


Assuntos
Comunicação Celular , Tubo Polínico , Polinização , Flores
3.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37373193

RESUMO

Ongoing global climate change suggests that crops will be exposed to environmental stresses that may affect their productivity, leading to possible global food shortages. Among these stresses, drought is the most important contributor to yield loss in global agriculture. Drought stress negatively affects various physiological, genetic, biochemical, and morphological characteristics of plants. Drought also causes pollen sterility and affects flower development, resulting in reduced seed production and fruit quality. Tomato (Solanum lycopersicum L.) is one of the most economically important crops in different parts of the world, including the Mediterranean region, and it is known that drought limits crop productivity, with economic consequences. Many different tomato cultivars are currently cultivated, and they differ in terms of genetic, biochemical, and physiological traits; as such, they represent a reservoir of potential candidates for coping with drought stress. This review aims to summarize the contribution of specific physio-molecular traits to drought tolerance and how they vary among tomato cultivars. At the genetic and proteomic level, genes encoding osmotins, dehydrins, aquaporins, and MAP kinases seem to improve the drought tolerance of tomato varieties. Genes encoding ROS-scavenging enzymes and chaperone proteins are also critical. In addition, proteins involved in sucrose and CO2 metabolism may increase tolerance. At the physiological level, plants improve drought tolerance by adjusting photosynthesis, modulating ABA, and pigment levels, and altering sugar metabolism. As a result, we underline that drought tolerance depends on the interaction of several mechanisms operating at different levels. Therefore, the selection of drought-tolerant cultivars must consider all these characteristics. In addition, we underline that cultivars may exhibit distinct, albeit overlapping, multilevel responses that allow differentiation of individual cultivars. Consequently, this review highlights the importance of tomato biodiversity for an efficient response to drought and for preserving fruit quality levels.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Resistência à Seca , Proteômica , Estresse Fisiológico/genética , Secas
4.
Plant Cell Rep ; 41(5): 1301-1318, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35303156

RESUMO

KEY MESSAGE: The article concerns the association between callose synthase and cytoskeleton by biochemical and ultrastructural analyses in the pollen tube. Results confirmed this association and immunogold labeling showed a colocalization. Callose is a cell wall polysaccharide involved in fundamental biological processes, from plant development to the response to abiotic and biotic stress. To gain insight into the deposition pattern of callose, it is important to know how the enzyme callose synthase is regulated through the interaction with the vesicle-cytoskeletal system. Actin filaments likely determine the long-range distribution of callose synthase through transport vesicles but the spatial/biochemical relationships between callose synthase and microtubules are poorly understood, although experimental evidence supports the association between callose synthase and tubulin. In this manuscript, we further investigated the association between callose synthase and microtubules through biochemical and ultrastructural analyses in the pollen tube model system, where callose is an essential component of the cell wall. Results by native 2-D electrophoresis, isolation of callose synthase complex and far-western blot confirmed that callose synthase is associated with tubulin and can therefore interface with cortical microtubules. In contrast, actin and sucrose synthase were not permanently associated with callose synthase. Immunogold labeling showed colocalization between the enzyme and microtubules, occasionally mediated by vesicles. Overall, the data indicate that pollen tube callose synthase exerts its activity in cooperation with the microtubular cytoskeleton.


Assuntos
Nicotiana , Tubo Polínico , Glucosiltransferases , Microtúbulos , Nicotiana/fisiologia , Tubulina (Proteína)
5.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628224

RESUMO

Land plants are constantly subjected to multiple unfavorable or even adverse environmental conditions. Among them, abiotic stresses (such as salt, drought, heat, cold, heavy metals, ozone, UV radiation, and nutrient deficiencies) have detrimental effects on plant growth and productivity and are increasingly important considering the direct or indirect effects of climate change. Plants respond in many ways to abiotic stresses, from gene expression to physiology, from plant architecture to primary, and secondary metabolism. These complex changes allow plants to tolerate and/or adapt to adverse conditions. The complexity of plant response can be further influenced by the duration and intensity of stress, the plant genotype, the combination of different stresses, the exposed tissue and cell type, and the developmental stage at which plants perceive the stress. It is therefore important to understand more about how plants perceive stress conditions and how they respond and adapt (both in natural and anthropogenic environments). These concepts were the basis of the Special Issue that International Journal of Molecular Sciences expressly addressed to the relationship between environmental stresses and plants and that resulted in the publication of 5 reviews and 38 original research articles. The large participation of several authors and the good number of contributions testifies to the considerable interest that the topic currently receives in the plant science community, especially in the light of the foreseeable climate changes. Here, we briefly summarize the contributions included in the Special Issue, both original articles categorized by stress type and reviews that discuss more comprehensive responses to various stresses.


Assuntos
Plantas , Estresse Fisiológico , Adaptação Fisiológica , Secas , Plantas/genética , Plantas/metabolismo , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética
6.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163795

RESUMO

Although pollen structure and morphology evolved toward the optimization of stability and fertilization efficiency, its performance is affected by harsh environmental conditions, e.g., heat, cold, drought, pollutants, and other stressors. These phenomena are expected to increase in the coming years in relation to predicted environmental scenarios, contributing to a rapid increase in the interest of the scientific community in understanding the molecular and physiological responses implemented by male gametophyte to accomplish reproduction. Here, after a brief introduction summarizing the main events underlying pollen physiology with a focus on polyamine involvement in its development and germination, we review the main effects that environmental stresses can cause on pollen. We report the most relevant evidence in the literature underlying morphological, cytoskeletal, metabolic and signaling alterations involved in stress perception and response, focusing on the final stage of pollen life, i.e., from when it hydrates, to pollen tube growth and sperm cell transport, with these being the most sensitive to environmental changes. Finally, we hypothesize the molecular mechanisms through which polyamines, well-known molecules involved in plant development, stress response and adaptation, can exert a protective action against environmental stresses in pollen by decoding the essential steps and the intersection between polyamines and pollen tube growth mechanisms.


Assuntos
Tubo Polínico/crescimento & desenvolvimento , Poliaminas/metabolismo , Fertilidade , Germinação , Tubo Polínico/metabolismo , Tubo Polínico/fisiologia , Transdução de Sinais , Estresse Fisiológico
7.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628226

RESUMO

Future climate scenarios suggest that crop plants will experience environmental changes capable of affecting their productivity. Among the most harmful environmental stresses is drought, defined as a total or partial lack of water availability. It is essential to study and understand both the damage caused by drought on crop plants and the mechanisms implemented to tolerate the stress. In this study, we focused on four cultivars of tomato, an economically important crop in the Mediterranean basin. We investigated the biochemical mechanisms of plant defense against drought by focusing on proteins specifically involved in this stress, such as osmotin, dehydrin, and aquaporin, and on proteins involved in the general stress response, such as HSP70 and cyclophilins. Since sugars are also known to act as osmoprotectants in plant cells, proteins involved in sugar metabolism (such as RuBisCO and sucrose synthase) were also analyzed. The results show crucial differences in biochemical behavior among the selected cultivars and highlight that the most tolerant tomato cultivars adopt quite specific biochemical strategies such as different accumulations of aquaporins and osmotins. The data set also suggests that RuBisCO isoforms and aquaporins can be used as markers of tolerance/susceptibility to drought stress and be used to select tomato cultivars within breeding programs.


Assuntos
Aquaporinas , Solanum lycopersicum , Secas , Solanum lycopersicum/fisiologia , Melhoramento Vegetal , Plantas , Ribulose-Bifosfato Carboxilase
8.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35887233

RESUMO

Low-molecular-weight, aspartic-acid-rich proteins (ASP-RICH) have been assumed to be involved in the self-incompatibility process of clementine. The role of ASP-RICH is not known, but hypothetically they could sequester calcium ions (Ca2+) and affect Ca2+-dependent mechanisms. In this article, we analyzed the effects induced by clementine ASP-RICH proteins (CcASP-RICH) when expressed in the tobacco heterologous system, focusing on the male gametophyte. The aim was to gain insight into the mechanism of action of ASP-RICH in a well-known cellular system, i.e., the pollen tube. Pollen tubes of tobacco transgenic lines expressing CcASP-RICH were analyzed for Ca2+ distribution, ROS, proton gradient, as well as cytoskeleton and cell wall. CcASP-RICH modulated Ca2+ content and consequently affected cytoskeleton organization and the deposition of cell wall components. In turn, this affected the growth pattern of pollen tubes. Although the expression of CcASP-RICH did not exert a remarkable effect on the growth rate of pollen tubes, effects at the level of growth pattern suggest that the expression of ASP-RICH may exert a regulatory action on the mechanism of plant cell growth.


Assuntos
Citrus , Tubo Polínico , Parede Celular/metabolismo , Citoesqueleto/metabolismo , Polinização , Nicotiana/genética
9.
Plant Physiol ; 183(4): 1559-1585, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32482906

RESUMO

Pollen tube tip growth depends on balancing secretion of cell wall material with endocytic recycling of excess material incorporated into the plasma membrane (PM). The classical model of tip growth, which predicts bulk secretion, occurs apically, and is compensated by subapical endocytosis, has been challenged in recent years. Many signaling proteins and lipids with important functions in the regulation of membrane traffic underlying tip growth associate with distinct regions of the pollen tube PM, and understanding the mechanisms responsible for the targeting of these regulatory factors to specific PM domains requires quantitative information concerning the sites of bulk secretion and endocytosis. Here, we quantitatively characterized the spatial organization of membrane traffic during tip growth by analyzing steady-state distributions and dynamics of FM4-64-labeled lipids and YFP-tagged transmembrane (TM) proteins in tobacco (Nicotiana tabacum) pollen tubes growing normally or treated with Brefeldin A to block secretion. We established that (1) secretion delivers TM proteins and recycled membrane lipids to the same apical PM domain, and (2) FM4-64-labeled lipids, but not the analyzed TM proteins, undergo endocytic recycling within a clearly defined subapical region. We mathematically modeled the steady-state PM distributions of all analyzed markers to better understand differences between them and to support the experimental data. Finally, we mapped subapical F-actin fringe and trans-Golgi network positioning relative to sites of bulk secretion and endocytosis to further characterize functions of these structures in apical membrane traffic. Our results support and further define the classical model of apical membrane traffic at the tip of elongating pollen tubes.


Assuntos
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Tubo Polínico/metabolismo , Arabidopsis/efeitos dos fármacos , Brefeldina A/farmacologia , Membrana Celular/efeitos dos fármacos , Tubo Polínico/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
10.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467001

RESUMO

Sucrose synthase is a key enzyme in sucrose metabolism as it saves an important part of sucrose energy in the uridine-5'-diphosphate glucose (UDP-glucose) molecule. As such it is also involved in the synthesis of fundamental molecules such as callose and cellulose, the latter being present in all cell walls of plant cells and therefore also in the gelatinous cell walls of sclerenchyma cells such as bast fibers. Given the importance of these cells in plants of economic interest such as hemp, flax and nettle, in this work we have studied the occurrence of Sucrose synthase in nettle stems by analyzing its distribution between the cytosol, membranes and cell wall. We have therefore developed a purification protocol that can allow the analysis of various characteristics of the enzyme. In nettle, Sucrose synthase is encoded by different genes and each form of the enzyme could be subjected to different post-translational modifications. Therefore, by two-dimensional electrophoresis analysis, we have also traced the phosphorylation profile of Sucrose synthase isoforms in the various cell compartments. This information paves the way for further investigation of Sucrose synthase in plants such as nettle, which is both economically important, but also difficult to study.


Assuntos
Glucosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Urtica dioica/enzimologia , Citosol/enzimologia , Glucosiltransferases/química , Fosforilação , Proteínas de Plantas/química , Caules de Planta/enzimologia , Processamento de Proteína Pós-Traducional
11.
Int J Mol Sci ; 22(16)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34445241

RESUMO

Global warming leads to a progressive rise in environmental temperature. Plants, as sessile organisms, are threatened by these changes; the male gametophyte is extremely sensitive to high temperature and its ability to preserve its physiological status under heat stress is known as acquired thermotolerance. This latter can be achieved by exposing plant to a sub-lethal temperature (priming) or to a progressive increase in temperature. The present research aims to investigate the effects of heat priming on the functioning of tobacco pollen grains. In addition to evaluating basic physiological parameters (e.g., pollen viability, germination and pollen tube length), several aspects related to a correct pollen functioning were considered. Calcium (Ca2+) level, reactive oxygen species (ROS) and related antioxidant systems were investigated, also to the organization of actin filaments and cytoskeletal protein such as tubulin (including tyrosinated and acetylated isoforms) and actin. We also focused on sucrose synthase (Sus), a key metabolic enzyme and on the content of main soluble sugars, including UDP-glucose. Results here obtained showed that a pre-exposure to sub-lethal temperatures can positively enhance pollen performance by altering its metabolism. This can have a considerable impact, especially from the point of view of breeding strategies aimed at improving crop species.


Assuntos
Temperatura Alta , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Termotolerância , Proteínas de Plantas/genética , Tubo Polínico/genética , Nicotiana/genética
12.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681874

RESUMO

In recent decades, atmospheric pollution led to a progressive reduction of the ozone layer with a consequent increase in UV-B radiation. Despite the high adaptation of olive trees to the Mediterranean environment, the progressive increase of UV-B radiation is a risk factor for olive tree cultivation. It is therefore necessary to understand how high levels of UV-B radiation affect olive plants and to identify olive varieties which are better adapted. In this study we analyzed two Italian olive varieties subjected to chronic UV-B stress. We focused on the effects of UV-B radiation on RubisCO, in terms of quantity, enzymatic activity and isoform composition. In addition, we also analyzed changes in the activity of antioxidant enzymes (SOD, CAT, GPox) to get a comprehensive picture of the antioxidant system. We also evaluated the effects of UV-B on the enzyme sucrose synthase. The overall damage at biochemical level was also assessed by analyzing changes in Hsp70, a protein triggered under stress conditions. The results of this work indicate that the varieties (Giarraffa and Olivastra Seggianese) differ significantly in the use of specific antioxidant defense systems, as well as in the activity and isoform composition of RubisCO. Combined with a different use of sucrose synthase, the overall picture shows that Giarraffa optimized the use of GPox and opted for a targeted choice of RubisCO isoforms, in addition to managing the content of sucrose synthase, thereby saving energy during critical stress points.


Assuntos
Antioxidantes/metabolismo , Olea/metabolismo , Olea/efeitos da radiação , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Enzimas/metabolismo , Glucosiltransferases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Itália , Peroxidação de Lipídeos/efeitos da radiação , Malondialdeído/metabolismo , Microscopia Eletrônica de Transmissão , Olea/citologia , Folhas de Planta/citologia , Folhas de Planta/efeitos da radiação , Raios Ultravioleta
13.
Molecules ; 26(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299564

RESUMO

BACKGROUND: Tomato by-products contain a great variety of biologically active substances and represent a significant source of natural antioxidant supplements of the human diet. The aim of the work was to compare the antioxidant properties of a by-product from an ancient Tuscan tomato variety, Rosso di Pitigliano (RED), obtained by growing plants in normal conditions (-Ctr) or in drought stress conditions (-Ds) for their beneficial effects on vascular related dysfunction. METHODS: The antioxidant activity and total polyphenol content (TPC) were measured. The identification of bioactive compounds of tomato peel was performed by HPLC. HUVEC were pre-treated with different TPC of RED-Ctr or RED-Ds, then stressed with H2O2. Cell viability, ROS production and CAT, SOD and GPx activities were evaluated. Permeation of antioxidant molecules contained in RED across excised rat intestine was also studied. RESULTS: RED-Ds tomato peel extract possessed higher TPC than compared to RED-Ctr (361.32 ± 7.204 mg vs. 152.46 ± 1.568 mg GAE/100 g fresh weight). All extracts were non-cytotoxic. Two hour pre-treatment with 5 µg GAE/mL from RED-Ctr or RED-Ds showed protection from H2O2-induced oxidative stress and significantly reduced ROS production raising SOD and CAT activity (* p < 0.05 and ** p < 0.005 vs. H2O2, respectively). The permeation of antioxidant molecules contained in RED-Ctr or RED-Ds across excised rat intestine was high with non-significant difference between the two RED types (41.9 ± 9.6% vs. 26.6 ± 7.8%). CONCLUSIONS: RED-Ds tomato peel extract represents a good source of bioactive molecules, which protects HUVECs from oxidative stress at low concentration.


Assuntos
Antioxidantes/farmacologia , Células Endoteliais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Solanum lycopersicum/química , Antioxidantes/química , Secas , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Solanum lycopersicum/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Polifenóis/química , Estresse Fisiológico
14.
Planta ; 250(5): 1539-1556, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31352512

RESUMO

MAIN CONCLUSION: The immuno-ultrastructural investigation localized cell-wall polysaccharides of bast fibers during hemp hypocotyl growth. Moreover, for the first time, the localization of a peroxidase and laccase is provided in textile hemp. In the hypocotyl of textile hemp, elongation and girth increase are separated in time. This organ is therefore ideal for time-course analyses. Here, we follow the ultrastructural rearrangement of cell-wall components during the development of the hemp hypocotyl. An expression analysis of genes involved in the biosynthesis of cellulose, the chief polysaccharide of bast fiber cell walls and xylan, the main hemicellulose of secondary cell walls, is also provided. The analysis shows a higher expression of cellulose and xylan-related genes at 15 and 20 days after sowing, as compared to 9 days. In the young hypocotyl, the cell walls of bast fibers show cellulose microfibrils that are not yet compacted to form a mature G-layer. Crystalline cellulose is detected abundantly in the S1-layer, together with unsubstituted/low-substituted xylan and, to a lesser extent, in the G-layer. The LM5 galactan epitope is confined to the walls of parenchymatic cells. LM6-specific arabinans are detected at the interface between the cytoplasm and the gelatinous cell wall of bast fibers. The class III peroxidase antibody shows localization in the G-layer only at older developmental stages. The laccase antibody shows a distinctive labelling of the G-layer region closest to the S1-layer; the signal becomes more homogeneous as the hypocotyl matures. The data provide important insights on the cell wall distribution of polysaccharide and protein components in bast fibers during the hypocotyl growth of textile hemp.


Assuntos
Cannabis/genética , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Cannabis/crescimento & desenvolvimento , Cannabis/metabolismo , Cannabis/ultraestrutura , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Celulose/metabolismo , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Hipocótilo/ultraestrutura , Transporte Proteico
15.
Int J Mol Sci ; 20(3)2019 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-30691221

RESUMO

The pollen tube was a fundamental step forward in the evolution of terrestrial plants; in fact, it allowed plants to liberate themselves from water demand during reproduction [...].


Assuntos
Fenômenos Fisiológicos Vegetais , Tubo Polínico/crescimento & desenvolvimento , Reprodução
16.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626063

RESUMO

Self-incompatibility (SI) is a complex process, one out of several mechanisms that prevent plants from self-fertilizing to maintain and increase the genetic variability. This process leads to the rejection of the male gametophyte and requires the co-participation of numerous molecules. Plants have evolved two distinct SI systems, the sporophytic (SSI) and the gametophytic (GSI) systems. The two SI systems are markedly characterized by different genes and proteins and each single system can also be divided into distinct subgroups; whatever the mechanism, the purpose is the same, i.e., to prevent self-fertilization. In Malinae, a subtribe in the Rosaceae family, i.e., Pyrus communis and Malus domestica, the GSI requires the production of female determinants, known as S-RNases, which penetrate the pollen tube to interact with the male determinants. Beyond this, the penetration of S-RNase into the pollen tube triggers a series of responses involving membrane proteins, such as phospholipases, intracellular variations of cytoplasmic Ca2+, production of reactive oxygen species (ROS) and altered enzymatic activities, such as that of transglutaminase (TGase). TGases are widespread enzymes that catalyze the post-translational conjugation of polyamines (PAs) to different protein targets and/or the cross-linking of substrate proteins leading to the formation of cross-linked products with high molecular mass. When actin and tubulin are the substrates, this destabilizes the cytoskeleton and inhibits the pollen-tube's growth process. In this review, we will summarize the current knowledge of the relationship between S-RNase penetration, TGase activity and cytoskeleton function during GSI in the Malinae.


Assuntos
Citoesqueleto/metabolismo , Células Germinativas Vegetais/fisiologia , Rosaceae/metabolismo , Autoincompatibilidade em Angiospermas/fisiologia , Transglutaminases/metabolismo , Tubo Polínico/crescimento & desenvolvimento
17.
Int J Mol Sci ; 20(14)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336562

RESUMO

Sweet cherries are non-climacteric fruits whose early development is characterized by high levels of the phytohormone jasmonic acid (JA). Important parameters, such as firmness and susceptibility to cracking, can be affected by pre- and postharvest treatments of sweet cherries with JA. Despite the impact of JA on sweet cherry development and fruit characteristics, there are no studies (to the best of our knowledge) identifying the genes involved in the JA biosynthetic pathway in this species. We herein identify the sweet cherry members of the lipoxygenase family (13-LOX); allene oxide synthase, allene oxide cyclase and 12-oxo-phytodienoic acid reductase 3, as well as genes encoding the transcriptional master regulator MYC2. We analyze their expression pattern in four non-commercial Tuscan varieties ('Carlotta', 'Maggiola', 'Morellona', 'Crognola') having different levels of bioactives (namely phenolics). The highest differences are found in two genes encoding 13-LOX in the variety 'Maggiola' and one MYC2 isoform in 'Morellona'. No statistically-significant variations are instead present in the allene oxide synthase, allene oxide cyclase and 12-oxo-phytodienoic acid reductase 3. Our data pave the way to follow-up studies on the JA signaling pathway in these ancient varieties, for example in relation to development and post-harvest storage.


Assuntos
Vias Biossintéticas/genética , Ciclopentanos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Análise de Variância , Cromatografia Líquida de Alta Pressão , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Fenóis/metabolismo , Filogenia , Prunus avium/classificação
18.
Molecules ; 24(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013661

RESUMO

The potential of six ancient Tuscan sweet cherry (Prunus avium L.) varieties as a source of health-promoting pentacyclic triterpenes is here evaluated by means of a targeted gene expression and metabolite analysis. By using a sequence homology criterion, we identify five oxidosqualene cyclase genes (OSCs) and three cytochrome P450s (CYP85s) that are putatively involved in the triterpene production pathway in sweet cherries. We performed 3D structure prediction and induced-fit docking using cation intermediates and reaction products for some OSCs to predict their function. We show that the Tuscan varieties have different amounts of ursolic and oleanolic acids and that these variations are related to different gene expression profiles. This study stresses the interest of valorizing ancient fruits as alternative sources of functional molecules with nutraceutical value. It also provides information on sweet cherry triterpene biosynthetic genes, which could be the object of follow-up functional studies.


Assuntos
Sistema Enzimático do Citocromo P-450 , Frutas , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Biológicos , Ácido Oleanólico , Proteínas de Plantas , Prunus avium , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Frutas/genética , Frutas/metabolismo , Ácido Oleanólico/biossíntese , Ácido Oleanólico/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Prunus avium/genética , Prunus avium/metabolismo , Ácido Ursólico
19.
Ann Bot ; 122(1): 23-43, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29659664

RESUMO

Background and Aims: Pollen tubes are rapidly growing, photosynthetically inactive cells that need high rates of energy to support growth. Energy can derive from internal and external storage sources. The lack of carbon sources can cause various problems during pollen tube growth, which in turn could affect the reproduction of plants. Methods: We analysed the effects of energy deficiency on the development of Nicotiana tabacum pollen tubes by replacing sucrose with glycerol in the growth medium. We focused on cell growth and related processes, such as metabolite composition and cell wall synthesis. Key Results: We found that the lack of sucrose affects pollen germination and pollen tube length during a specific growth period. Both sugar metabolism and ATP concentration were affected by sucrose shortage when pollen tubes were grown in glycerol-based media; this was related to decreases in the concentrations of glucose, fructose and UDP-glucose. The intracellular pH and ROS levels also showed a different distribution in pollen tubes grown in sucrose-depleted media. Changes were also observed at the cell wall level, particularly in the content and distribution of two enzymes related to cell wall synthesis (sucrose synthase and callose synthase). Furthermore, both callose and newly secreted cell wall material (mainly pectins) showed an altered distribution corresponding to the lack of oscillatory growth in pollen tubes. Growth in glycerol-based media also temporarily affected the movement of generative cells and, in parallel, the deposition of callose plugs. Conclusion: Pollen tubes represent an ideal model system for studying metabolic pathways during the growth of plant cells. In our study, we found evidence that glycerol, a less energetic source for cell growth than sucrose, causes critical changes in cell wall deposition. The evidence that different aspects of pollen tube growth are affected is an indication that pollen tubes adapt to metabolic stress.


Assuntos
Redes e Vias Metabólicas , Nicotiana/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimento , Estresse Fisiológico , Sacarose/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Glucanos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicerol/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubo Polínico/enzimologia , Tubo Polínico/genética , Tubo Polínico/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/fisiologia
20.
Int J Mol Sci ; 19(8)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071603

RESUMO

The identification and use of species that have best adapted to their growth territory is of paramount importance to preserve biodiversity while promoting sustainable agricultural practices. Parameters including resistance to natural conditions (biotic and abiotic risk factors), biomass and fruit productivity, and phytochemical content with nutraceutical potential, could be used as quantitative markers of the adaptability of plants to wild environments characterized by minimal human impact. Ancient varieties, which are plant varieties growing in regional territories and not destined for market distribution, are a source of unique genetic characters derived from many years of adaptation to the original territory. These plants are often more resistant to biotic and abiotic stresses. In addition, these varieties have a high phytochemical (also known as bioactives) content considered health-beneficial. Notably, the content of these compounds is often lower in commercial cultivars. The use of selected territorial varieties according to the cultivation area represents an opportunity in the agricultural sector in terms of biodiversity preservation, environmental sustainability, and valorization of the final products. Our survey highlights the nutraceutical potential of ancient local varieties and stresses the importance of holistic studies (-omics) to investigate their physiology and secondary metabolism.


Assuntos
Biotecnologia/história , Produtos Agrícolas/história , Melhoramento Vegetal/história , Biotecnologia/tendências , Produtos Agrícolas/crescimento & desenvolvimento , História Antiga , Humanos , Melhoramento Vegetal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA