RESUMO
Asgard is a recently discovered superphylum of archaea that appears to include the closest archaeal relatives of eukaryotes1-5. Debate continues as to whether the archaeal ancestor of eukaryotes belongs within the Asgard superphylum or whether this ancestor is a sister group to all other archaea (that is, a two-domain versus a three-domain tree of life)6-8. Here we present a comparative analysis of 162 complete or nearly complete genomes of Asgard archaea, including 75 metagenome-assembled genomes that-to our knowledge-have not previously been reported. Our results substantially expand the phylogenetic diversity of Asgard and lead us to propose six additional phyla that include a deep branch that we have provisionally named Wukongarchaeota. Our phylogenomic analysis does not resolve unequivocally the evolutionary relationship between eukaryotes and Asgard archaea, but instead-depending on the choice of species and conserved genes used to build the phylogeny-supports either the origin of eukaryotes from within Asgard (as a sister group to the expanded Heimdallarchaeota-Wukongarchaeota branch) or a deeper branch for the eukaryote ancestor within archaea. Our comprehensive protein domain analysis using the 162 Asgard genomes results in a major expansion of the set of eukaryotic signature proteins. The Asgard eukaryotic signature proteins show variable phyletic distributions and domain architectures, which is suggestive of dynamic evolution through horizontal gene transfer, gene loss, gene duplication and domain shuffling. The phylogenomics of the Asgard archaea points to the accumulation of the components of the mobile archaeal 'eukaryome' in the archaeal ancestor of eukaryotes (within or outside Asgard) through extensive horizontal gene transfer.
Assuntos
Archaea/classificação , Genoma Arqueal , Filogenia , Evolução Biológica , Eucariotos , MetagenômicaRESUMO
Plitidepsin (or dehydrodidemnin B), an approved anticancer drug, belongs to the didemnin family of cyclic depsipeptides, which are found in limited quantities in marine tunicate extracts. Herein, we introduce a new approach that integrates microbial and chemical synthesis to generate plitidepsin and its analogues. We screened a Tistrella strain library to identify a potent didemnin B producer, and then introduced a second copy of the didemnin biosynthetic gene cluster into its genome, resulting in a didemnin B titer of approximately 75â mg/L. Next, we developed two straightforward chemical strategies to convert didemnin B into plitidepsin, one of which involved a one-step synthetic route giving over 90 % overall yield. Furthermore, we synthesized 13 new didemnin derivatives and three didemnin probes, enabling research into structure-activity relationships and interactions between didemnin and proteins. Our study highlights the synergistic potential of biosynthesis and chemical synthesis in overcoming the challenge of producing complex natural products sustainably and at scale.
Assuntos
Antineoplásicos , Depsipeptídeos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Depsipeptídeos/farmacologia , Antineoplásicos/farmacologia , Relação Estrutura-AtividadeRESUMO
Thermoprofundales, formerly Marine Benthic Group D (MBG-D), is a ubiquitous archaeal lineage found in sedimentary environments worldwide. However, its taxonomic classification, metabolic pathways, and evolutionary history are largely unexplored because of its uncultivability and limited number of sequenced genomes. In this study, phylogenomic analysis and average amino acid identity values of a collection of 146 Thermoprofundales genomes revealed five Thermoprofundales subgroups (A-E) with distinct habitat preferences. Most of the microorganisms from Subgroups B and D were thermophiles inhabiting hydrothermal vents and hot spring sediments, whereas those from Subgroup E were adapted to surface environments where sunlight is available. H2 production may be featured in Thermoprofundales as evidenced by a gene cluster encoding the ancient membrane-bound hydrogenase (MBH) complex. Interestingly, a unique structure separating the MBH gene cluster into two modular units was observed exclusively in the genomes of Subgroup E, which included a peripheral arm encoding the [NiFe] hydrogenase domain and a membrane arm encoding the Na+/H+ antiporter domain. These two modular structures were confirmed to function independently by detecting the H2-evolving activity in vitro and salt tolerance to 0.2â M NaCl in vivo, respectively. The peripheral arm of Subgroup E resembles the proposed common ancestral respiratory complex of modern respiratory systems, which plays a key role in the early evolution of life. In addition, molecular dating analysis revealed that Thermoprofundales is an early emerging archaeal lineage among the extant MBH-containing microorganisms, indicating new insights into the evolution of this ubiquitous archaea lineage.
Assuntos
Archaea , Hidrogenase , Archaea/genética , Archaea/metabolismo , Hidrogenase/química , Hidrogenase/genética , Hidrogenase/metabolismo , Cloreto de Sódio/metabolismo , Filogenia , Sistema Respiratório/metabolismo , Aminoácidos/genética , Antiporters/genética , Antiporters/metabolismoRESUMO
Mangrove receives aquaculture wastewater and urban sewage, and thus is a potential reservoir for antibiotic resistance genes (ARGs). However, there is a dearth of a comprehensive profile of ARGs in mangrove ecosystems. We used metagenomic techniques to uncover the occurrence, host range, and potential mobility of ARGs in six mangrove ecosystems in southeastern China. Based on deep sequencing data, a total of 348 ARG subtypes were identified. The abundant ARGs were associated with acriflavine, bacitracin, beta-lactam, fluoroquinolone, macrolide-lincosamide-streptogramin, and polymyxin. Resistance genes tetR, aac(6')-Iae, aac(3)-IXa, vanRA, vanRG, and aac(3)-Ig were proposed as ARG indicators in mangrove ecosystems that can be used to evaluate the abundance of 100 other co-occurring ARGs quantitatively. Remarkably, 250 of 348 identified ARG subtypes were annotated as mobile genetic elements-associated ARGs, indicating a high potential risk of propagation of ARGs in mangrove ecosystems. By surveying the distribution of ARGs in 6281 draft genomes, more than 42 bacterial phyla were identified as the putative hosts of the ARGs. Among them, 21.97% were potentially multidrug-resistant hosts, including human and animal opportunistic pathogens. This research adds to our understanding of the distribution and spread of antibiotic resistomes in mangrove ecosystems, helping improve ARG risk assessment and management worldwide.
Assuntos
Antibacterianos , Genes Bacterianos , Animais , Humanos , Antibacterianos/farmacologia , Ecossistema , Prevalência , Resistência Microbiana a Medicamentos/genética , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
Trillions of microorganisms, including bacteria, archaea, fungi, and viruses, live in or on the human body. Microbe-microbe and microbe-host interactions are often influenced by diffusible and microbe-associated small molecules. Over the past few years, it has become evident that these interactions have a substantial impact on human health and disease. In this Perspective, we summarize the research involving the discovery of methanogenic and non-methanogenic archaea associated with the human body. In particular, we emphasize the importance of some archaeal metabolites in mediating intra- and interspecies interactions in the ecological environment of the human body. A deep understanding of the archaeal metabolites as well as their biological functions may reveal in more detail whether and how archaea are involved in maintaining human health and/or causing certain diseases.
Assuntos
Archaea , Euryarchaeota , Humanos , Archaea/metabolismo , Bactérias/metabolismo , FungosRESUMO
BACKGROUND: Amplification of small subunit (SSU) rRNA genes with universal primers is a common method used to assess microbial populations in various environmental samples. However, owing to limitations in coverage of these universal primers, some microorganisms remain unidentified. The present study aimed to establish a method for amplifying nearly full-length SSU rRNA gene sequences of previously unidentified prokaryotes, using newly designed targeted primers via primer evaluation in meta-transcriptomic datasets. METHODS: Primer binding regions of universal primer 8F/Arch21F for bacteria or archaea were used for primer evaluation of SSU rRNA sequences in meta-transcriptomic datasets. Furthermore, targeted forward primers were designed based on SSU rRNA reads from unclassified groups unmatched with the universal primer 8F/Arch21F, and these primers were used to amplify nearly full-length special SSU rRNA gene sequences along with universal reverse primer 1492R. Similarity and phylogenetic analysis were used to confirm their novel status. RESULTS: Using this method, we identified unclassified SSU rRNA sequences that were not matched with universal primer 8F and Arch21F. A new group within the Asgard superphylum was amplified by the newly designed specific primer based on these unclassified SSU rRNA sequences by using mudflat samples. CONCLUSION: We showed that using specific primers designed based on universal primer evaluation from meta-transcriptomic datasets, identification of novel taxonomic groups from a specific environment is possible.
Assuntos
Archaea/classificação , Primers do DNA/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA/métodos , Archaea/genética , DNA Arqueal/genética , DNA Ribossômico/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
UNLABELLED: Coculturing dark- and photofermentative bacteria is a promising strategy for enhanced hydrogen (H2) production. In this study, next-generation sequencing was used to query the global transcriptomic responses of an artificial coculture of Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009. By analyzing differentially regulated gene expression, we showed that, consistent with the physiological observations of enhanced H2 production and cellulose degradation, the nitrogen fixation genes in R. palustris and the cellulosomal genes in C. cellulovorans were upregulated in cocultures. Unexpectedly, genes related to H2 production in C. cellulovorans were downregulated, suggesting that the enhanced H2 yield was contributed mainly by R. palustris A number of genes related to biosynthesis of volatile fatty acids (VFAs) in C. cellulovorans were upregulated, and correspondingly, a gene that mediates organic compound catabolism in R. palustris was also upregulated. Interestingly, a number of genes responsible for chemotaxis in R. palustris were upregulated, which might be elicited by the VFA concentration gradient created by C. cellulovorans In addition, genes responsible for sulfur and thiamine metabolism in C. cellulovorans were downregulated in cocultures, and this could be due to a response to pH changes. A conceptual model illustrating the interactions between the two organisms was constructed based on the transcriptomic results. IMPORTANCE: The findings of this study have important biotechnology applications for biohydrogen production using renewable cellulose, which is an industrially and economically important bioenergy process. Since the molecular characteristics of the interactions of a coculture when cellulose is the substrate are still unclear, this work will be of interest to microbiologists seeking to better understand and optimize hydrogen-producing coculture systems.
Assuntos
Proteínas de Bactérias/genética , Celulose/metabolismo , Clostridium cellulovorans/genética , Clostridium cellulovorans/metabolismo , Hidrogênio/metabolismo , Rodopseudomonas/genética , Rodopseudomonas/metabolismo , Transcriptoma , Proteínas de Bactérias/metabolismo , Técnicas de CoculturaRESUMO
Cellulose and xylan are two major components of lignocellulosic biomass, which represents a potentially important energy source, as it is abundant and can be converted to methane by microbial action. However, it is recalcitrant to hydrolysis, and the establishment of a complete anaerobic digestion system requires a specific repertoire of microbial functions. In this study, we maintained 2-year enrichment cultures of anaerobic digestion sludge amended with cellulose or xylan to investigate whether a cellulose- or xylan-digesting microbial system could be assembled from sludge previously used to treat neither of them. While efficient methane-producing communities developed under mesophilic (35°C) incubation, they did not under thermophilic (55°C) conditions. Illumina amplicon sequencing results of the archaeal and bacterial 16S rRNA genes revealed that the mature cultures were much lower in richness than the inocula and were dominated by single archaeal (genus Methanobacterium) and bacterial (order Clostridiales) groups, although at finer taxonomic levels the bacteria were differentiated by substrates. Methanogenesis was primarily via the hydrogenotrophic pathway under all conditions, although the identity and growth requirements of syntrophic acetate-oxidizing bacteria were unclear. Incubation conditions (substrate and temperature) had a much greater effect than inoculum source in shaping the mature microbial community, although analysis based on unweighted UniFrac distance found that the inoculum still determined the pool from which microbes could be enriched. Overall, this study confirmed that anaerobic digestion sludge treating nonlignocellulosic material is a potential source of microbial cellulose- and xylan-digesting functions given appropriate enrichment conditions.
Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Biota , Celulose/metabolismo , Metano/metabolismo , Esgotos/microbiologia , Xilanos/metabolismo , Anaerobiose , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , TemperaturaRESUMO
Marine microorganisms like Tistrella are essential for producing bioactive compounds, including didemnins with antitumor and antiviral properties. However, our understanding of Tistrella's ecological features and didemnin production in natural environments is limited. In this study, we used genomics and metagenomics to show that Tistrella is widely distributed across natural habitats, especially in marine environments from the surface to 5000 m deep, with distinct non-random distribution patterns revealed by co-occurrence analysis. Importantly, transcriptional profiling of didemnin biosynthetic gene clusters indicates active in situ production of this compound within marine ecosystems. These findings enhance our understanding of Tistrella's ecology and secondary metabolite production in natural environments. Further research is needed to explore the ecological dynamics and functional impacts of Tistrella in these ecosystems.
Assuntos
Ecossistema , Microbiota , Organismos Aquáticos , Metagenômica , Água do Mar/microbiologia , Água do Mar/químicaRESUMO
The microbial synthesis of sulfonolipids within the human body is likely involved in maintaining human health or causing diseases. However, the enzymes responsible for their biosynthesis remain largely unknown. In this study, we identified and verified the role of 3-ketocapnine reductase, the third-step enzyme, in the four-step conversion of l-phosphoserine into sulfobacin B both in vivo and in vitro. This finding builds upon our previous research into sulfonolipid biosynthesis, which focused on the vaginal bacterium Chryseobacterium gleum DSM 16776 and the gut bacterium Alistipes finegoldii DSM 17242. Through comprehensive gene mapping, we demonstrate the widespread presence of potential sulfonolipid biosynthetic genes across diverse bacterial species inhabiting various regions of the human body. These findings shed light on the prevalence of sulfonolipid-like metabolites within the human microbiota, suggesting a potential role for these lipid molecules in influencing the intricate biointeractions within the complex microbial ecosystem of the human body.
RESUMO
Bathyarchaeia represent a class of archaea common and abundant in sedimentary ecosystems. Here we report 56 metagenome-assembled genomes of Bathyarchaeia viruses identified in metagenomes from different environments. Gene sharing network and phylogenomic analyses led to the proposal of four virus families, including viruses of the realms Duplodnaviria and Adnaviria, and archaea-specific spindle-shaped viruses. Genomic analyses uncovered diverse CRISPR elements in these viruses. Viruses of the proposed family "Fuxiviridae" harbor an atypical Type IV-B CRISPR-Cas system and a Cas4 protein that might interfere with host immunity. Viruses of the family "Chiyouviridae" encode a Cas2-like endonuclease and two mini-CRISPR arrays, one with a repeat identical to that in the host CRISPR array, potentially allowing the virus to recruit the host CRISPR adaptation machinery to acquire spacers that could contribute to competition with other mobile genetic elements or to inhibit host defenses. These findings present an outline of the Bathyarchaeia virome and offer a glimpse into their counter-defense mechanisms.
RESUMO
BACKGROUND: The trophic strategy is one key principle to categorize microbial lifestyles, by broadly classifying microorganisms based on the combination of their preferred carbon sources, electron sources, and electron sinks. Recently, a novel trophic strategy, i.e., chemoorganoautotrophy-the utilization of organic carbon as energy source but inorganic carbon as sole carbon source-has been specifically proposed for anaerobic methane oxidizing archaea (ANME-1) and Bathyarchaeota subgroup 8 (Bathy-8). RESULTS: To further explore chemoorganoautotrophy, we employed stable isotope probing (SIP) of nucleic acids (rRNA or DNA) using unlabeled organic carbon and 13C-labeled dissolved inorganic carbon (DIC), i.e., inverse stable isotope labeling, in combination with metagenomics. We found that ANME-1 archaea actively incorporated 13C-DIC into RNA in the presence of methane and lepidocrocite when sulfate was absent, but assimilated organic carbon when cellulose was added to incubations without methane additions. Bathy-8 archaea assimilated 13C-DIC when lignin was amended; however, their DNA was derived from both inorganic and organic carbon sources rather than from inorganic carbon alone. Based on SIP results and supported by metagenomics, carbon transfer between catabolic and anabolic branches of metabolism is possible in these archaeal groups, indicating their anabolic versatility. CONCLUSION: We provide evidence for the incorporation of the mixed organic and inorganic carbon by ANME-1 and Bathy-8 archaea in the environment. Video Abstract.
Assuntos
Archaea , Metano , Archaea/genética , Marcação por Isótopo , Oxirredução , Metano/metabolismo , Carbono/metabolismo , DNA , Anaerobiose , Sedimentos Geológicos , FilogeniaRESUMO
Sphingolipids, present in both higher animals and prokaryotes, involving in cell differentiation, pathogenesis and apoptosis in human physiological health. With increasing attention on the gut microbiome and its impact on wellbeing, there is a renewed focus on exploring bacterial sphingolipids. This review aims to consolidate the current understanding of bacterial sphingolipids and their impact on host health. Compared to mammalian sphingolipids, bacterial sphingolipids are characterized by odd chain lengths due to the presence of branched alkyl chains. Additionally, intestinal microbial sphingolipids can migrate from the gut to various host organs, affecting the immune system and metabolism. Furthermore, the intricate interplay between dietary sphingolipids and the gut microbiota is explored, shedding light on their complex relationship. Despite limited knowledge in this area, this review aims to raise awareness about the importance of bacterial sphingolipids and further our understanding of more uncharacterized bacterial sphingolipids and their significant role in maintaining host health.
RESUMO
Methylmercury (MeHg) is a potent neurotoxin that bioaccumulates along food chains. The conversion of MeHg from mercury (Hg) is mediated by a variety of anaerobic microorganisms carrying hgcAB genes. Mangrove sediments are potential hotspots of microbial Hg methylation; however, the microorganisms responsible for Hg methylation are poorly understood. Here, we conducted metagenomic and metatranscriptomic analyses to investigate the diversity and distribution of putative microbial Hg-methylators in mangrove ecosystems. The highest hgcA abundance and expression occurred in surface sediments in Shenzhen, where the highest MeHg concentration was also observed. We reconstructed 157 metagenome-assembled genomes (MAGs) carrying hgcA and identified several putative novel Hg-methylators, including one Asgard archaea (Lokiarchaeota). Further analysis of MAGs revealed that Deltaproteobacteria, Euryarchaeota, Bacteroidetes, Chloroflexi, and Lokiarchaeota were the most abundant and active Hg-methylating groups, implying their crucial role in MeHg production. By screening publicly available MAGs, 104 additional Asgard MAGs carrying hgcA genes were identified from a wide range of coast, marine, permafrost, and lake sediments. Protein homology modelling predicts that Lokiarchaeota HgcAB proteins contained the highly conserved amino acid sequences and folding structures required for Hg methylation. Phylogenetic tree revealed that hgcA genes from Asgard clustered with fused hgcAB genes, indicating a transitional stage of Asgard hgcA genes. Our findings thus suggest that Asgard archaea are potential novel Hg-methylating microorganisms and play an important role in hgcA evolution.
Assuntos
Mercúrio , Compostos de Metilmercúrio , Mercúrio/metabolismo , Archaea/genética , Archaea/metabolismo , Ecossistema , Metilação , Filogenia , Compostos de Metilmercúrio/metabolismo , Sedimentos Geológicos/microbiologiaRESUMO
Bathyarchaeia represent a class of archaea common and abundant in sedimentary ecosystems. The virome of Bathyarchaeia so far has not been characterized. Here we report 56 metagenome-assembled genomes of Bathyarchaeia viruses identified in metagenomes from different environments. Gene sharing network and phylogenomic analyses led to the proposal of four virus families, including viruses of the realms Duplodnaviria and Adnaviria, and archaea-specific spindle-shaped viruses. Genomic analyses uncovered diverse CRISPR elements in these viruses. Viruses of the proposed family 'Fuxiviridae' harbor an atypical type IV-B CRISPR-Cas system and a Cas4 protein that might interfere with host immunity. Viruses of the family 'Chiyouviridae' encode a Cas2-like endonuclease and two mini-CRISPR arrays, one with a repeat identical to that in the host CRISPR array, potentially allowing the virus to recruit the host CRISPR adaptation machinery to acquire spacers that could contribute to competition with other mobile genetic elements or to inhibition of host defenses. These findings present an outline of the Bathyarchaeia virome and offer a glimpse into their counter-defense mechanisms.
RESUMO
Objective: This study aimed to identify factors significantly associated with the occurrence of osteoporosis in elderly and very elderly patients. Methods: Elderly hospitalized patients who were older than 60 years old, from the Rehabilitation Hospital from December 2019 to December 2020 were selected. Barthel index (BI), nutritional assessment, the causes of bone mineral density (BMD) reductions in elderly and elderly patients were analysed. Results: A total of 94 patients (83.56 ± 8.37 years old) were enrolled. With increasing age, the BMD of the lumbar spine, femoral neck, and femoral shaft of elderly patients significantly decreased, and the incidence of osteoporosis (OP) significantly increased. The BMD of the lumbar spine was negatively correlated with female and positively correlated with serum 25-hydroxyvitamin D levels, the difference between actual body weight and ideal body weight, and blood uric acid levels; The BMD of the femoral neck was negatively correlated with age and female, and positively correlated with height and geriatric nutrition risk index score. The BMD of the femoral shaft was negatively correlated with female and positively correlated with BI. Conclusion: With increasing age, the BMD of the lumbar spine and the femoral shaft significantly decreased, and the incidence of OP significantly increased in elderly and very elderly patients. Aric acid may protect bone health in elderly patients. Early attention to the nutritional status, exercise capacity, 25-hydroxyvitamin D level, and blood uric acid level in the elderly population can help identify high-risk elderly patients with OP.
RESUMO
There is increasing awareness that archaea are interrelated with human diseases (including cancer). Archaea utilize unique metabolic pathways to produce a variety of metabolites that serve as a direct link to host-microbe interactions. However, knowledge on the diversity of human-associated archaea is still extremely limited, and less is known about the pathological effects of their metabolites to the tumor microenvironment and carcinogenesis. In the present study, we performed a large-scale analysis of archaea and their cancer-related metabolites across different body sites using >44,000 contigs with length >1,000 bp. Taxonomy annotation revealed that the occurrence and diversity of archaea are higher in two body sites, the gut and the oral cavity. Unlike other human-associated microbes, the nonmetric multidimensional scaling (NMDS) and permutational multivariate analysis of variance (PERMANOVA) analyses have shown no difference of archaeal compositions between Easterners and Westerners. Likewise, protein annotation suggests that genes encoding cancer-related metabolites (e.g., short-chain fatty acids and polyamines) are more prevalent and diverse in gut and oral samples. Archaea carrying these metabolites are restricted to Euryarchaeota and the TACK superphylum (Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota), especially methanogenic archaea, such as Methanobacteria. IMPORTANCE More evidence suggests that archaea are associated with human disease, including cancer. Here, we present the first framework of the diversity and distribution of human-associated archaea across human body sites, such as gut and oral cavity, using long contigs. Furthermore, we unveiled the potential archaeal metabolites linking to different lineages that might influence the tumor microenvironment and carcinogenesis. These results could open a new door to the guidance of diagnosing cancer and developing new treatment strategies.
Assuntos
Archaea , Microambiente Tumoral , Archaea/genética , Archaea/metabolismo , Carcinogênese , Humanos , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
Metagenomic explorations of the Earth's biosphere enable the discovery of previously unknown bacterial lineages of phylogenetic and ecological significance. Here, we retrieved 11 metagenomic-assembled genomes (MAGs) affiliated to three new monophyletic bacterial lineages from the seawater of the Yap Trench. Phylogenomic analysis revealed that each lineage is a new bacterial candidate phylum, subsequently named Candidatus Qinglongiota, Candidatus Heilongiota, and Candidatus Canglongiota. Metabolic reconstruction of genomes from the three phyla suggested that they adopt a versatile lifestyle, with the potential to utilize various types of sugars, proteins, and/or short-chain fatty acids through anaerobic pathways. This was further confirmed by a global distribution map of the three phyla, indicating a preference for oxygen-limited or particle-attached niches, such as anoxic sedimentary environments. Of note, Candidatus Canglongiota genomes harbor genes for the complete Wood- Ljungdahl pathway and sulfate reduction that are similar to those identified in some sulfate-reducing bacteria. Evolutionary analysis indicated that gene gain and loss events, and horizontal gene transfer (HGT) play important roles in shaping the genomic and metabolic features of the three new phyla. This study presents the genomic insight into the ecology, metabolism, and evolution of three new phyla, which broadens the phylum-level diversity within the domain Bacteria.
Assuntos
Bactérias , Metagenoma , Genoma Bacteriano/genética , Genômica , Filogenia , Sulfatos/metabolismoRESUMO
Due to its unique physical and chemical properties, MXene has recently attracted much attention as a promising candidate for wastewater treatment. However, the low water permeation flux of MXene membrane remains a challenge that has not been fully solved. In this study, attapulgite was used to increase the flux of MXene membrane through a facile one-pot method, during which the MXene nanosheets were self-assembled while being intercalated by the attapulgite nanorods to finally form the composite membranes. Under optimal conditions, an increase of water permeation flux of 97.31% could be observed, which was attributed to the broadened nano-channel upon the adequate intercalation of attapulgite nanorods. Its permeation flux and rejection rate for methylene blue (MB) were further studied for diverse applications. In contrast to bare MXene, the permeation flux increased by 61.72% with a still high rejection rate of 90.67%, owing to the size rejection. Overcoming a key technique barrier, this work successfully improved the water permeability of MXene by inserting attapulgite nanorods, heralding the exciting prospects of MXene-based lamellar membrane in dye wastewater treatment.
RESUMO
Theionarchaea is a recently described archaeal class within the Euryarchaeota. While it is widely distributed in sediment ecosystems, little is known about its metabolic potential and ecological features. Here, we used metagenomics and metatranscriptomics to characterize 12 theionarchaeal metagenome-assembled genomes, which were further divided into two subgroups, from coastal mangrove sediments of China and seawater columns of the Yap Trench. Genomic analysis revealed that apart from the canonical sulfhydrogenase, Theionarchaea harbor genes encoding heliorhodopsin, group 4 [NiFe]-hydrogenase, and flagellin, in which genes for heliorhodopsin and group 4 [NiFe]-hydrogenase were transcribed in mangrove sediment. Further, the theionarchaeal substrate spectrum may be broader than previously reported as revealed by metagenomics and metatranscriptomics, and the potential carbon substrates include detrital proteins, hemicellulose, ethanol, and CO2. The genes for organic substrate metabolism (mainly detrital protein and amino acid metabolism genes) have relatively higher transcripts in the top sediment layers in mangrove wetlands. In addition, co-occurrence analysis suggested that the degradation of these organic compounds by Theionarchaea might be processed in syntrophy with fermenters (e.g., Chloroflexi) and methanogens. Collectively, these observations expand the current knowledge of the metabolic potential of Theionarchaea, and shed light on the metabolic strategies and roles of these archaea in the marine ecosystems.