RESUMO
Lithium-sulfur (Li-S) batteries have received much attention due to their high energy density and low price. In recent years, alleviating the volume expansion and suppressing the shuttle effect during the charge and discharge processes of Li-S batteries have been widely addressed. However, the slow conversion kinetics from polysulfide (LiPSs) to Li2S2/Li2S still limits the application of Li-S batteries. Therefore, we designed a ZIF-67 grown on cellulose (named ZIF-67@CL) as an electrocatalyst to improve the interconversion kinetics from LiPSs to Li2S2/Li2S for Li-S batteries. Based on the results of adsorption experiments of LiPSs, ZIF-67@CL and CL hosts were immersed in Li2S4 solution to adsorb LiPSs, and the UV-Vis test was conducted on the supernatant after adsorption. The results showed that the ZIF-67@CL had a stronger adsorption for LiPSs compared with the cellulose (CL). Furthermore, in the Li2S nucleation tests, the fabricated cells were galvanostatically discharged to 2.06 V at 0.112 mA and then potentiostatically discharged at 2.05 V. Based on the results of Li2S nucleation tests, the catalytic effect of ZIF-67 was further verified. As a result, the sulfur cathode used a ZIF-67 catalyst (named S/ZIF-67@CL) and delivered an initial capacity of 1346 mAh g-1 at a current density of 0.2 C. Even at a high current density of 2 C, it exhibited a high-capacity performance of 1087 mAh g-1 on the first cycle and maintained a capacity output of 462 mAh g-1 after 150 cycles, with a Coulombic efficiency of over 99.82%.
RESUMO
The application of lithium metal batteries is limited by the drawbacks of safety problems and Li dendrite formation. Quasi-solid-state electrolytes (QSSEs) are the most promising alternatives to commercial liquid electrolytes due to their high safety and great compatibility with electrodes. However, Li dendrite formation and the slow Li+ diffusion in QSSEs severely hinder uniform Li deposition, thus leading to Li dendrite growth and short circuits. Herein, an eco-friendly and low-cost sodium lignosulfonate (LSS)-assisted PVDF-based QSSE is proposed to induce uniform Li deposition and inhibit Li dendrite growth. Li symmetric cells with 5%-LSS QSSE possess a high Li+ transfer number of 0.79, and they exhibit a long cycle life of 1000 h at a current density/areal capacity of 1 mA cm-2/5 mAh cm-2. Moreover, due to the fast electrochemical dynamics endowed by the improved compatibility of the electrodes and fast Li+ diffusion, the LFP/5%-LSS/Li full cells still maintain a high capacity of 110 mAh g-1 after 250 cycles at 6C. This work provides a novel and promising choice that uses eco-friendly LSS as an additive to PVDF-based QSSE in Li metal batteries.
RESUMO
The shuttle effect, sluggish conversion kinetics, and uncontrollable lithium dendrites seriously hinder the practical application of lithium-sulfur (Li-S) batteries. Among many modified materials, covalent organic frameworks (COFs) stand out for their excellent ability to inhibit the shuttle effect, while their role in promoting lithium nucleation and catalyzing the conversion of sulfur species has been largely ignored. In this study, an integrated COF separator (TpPa@2400) is developed as a rapid lithium nucleator and sulfur species catalyst in fast-charging Li-S batteries. According to the adsorption energy and Bader charge results, Li atoms preferentially adsorb onto the surface of the TpPa@2400 separator, and the larger Bader charge value (0.52 |e|) of the TpPa@2400 separator also signifies faster lithium transport, promoting the nucleation of Li ions. Furthermore, density functional theory (DFT) theoretically demonstrates that the TpPa@2400 separator exhibits lower free energy for sulfur species interconversion. As a result, the TpPa@2400 separator enables the Li-Li symmetric cell with an extended cycle life of 6000 h at a current density/capacity of 10 mA cm-2/10 mAh cm-2. The Li-S battery assembled using the TpPa@2400 separator delivers a high capacity of 1636.4 mAh/g at 0.1C and a rapid sulfur species conversion capacity of 513.8 mAh/g at 2C.
RESUMO
Challenges associated with lithium dendrite growth and the formation of dead lithium significantly limit the achievable energy density of lithium metal batteries (LMBs), particularly under high operating current densities. Our innovative design employs a state-of-the-art 2500 separator featuring a meticulously engineered cellulose acetate (CA) coating (CA@2500) to suppress dendrite nucleation and propagation. The CO functional groups in CA enhances charge transfer kinetics and triggering the decomposition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), which leads to the formation of a more robust solid electrolyte interphase (SEI) composed primarily of LiF. Moreover, the introduction of polar functional groups in the CA enhances the separator's hydrophilic properties, facilitating the uniform Li+ flux and creating a conductive pathway for efficient lithium migration. As a result, the CA@2500 separator exhibits a high lithium-ion transfer number (0.88) and conductivity. The lithium symmetric cell assembles with the CA@2500 separator displays a stable cycling performance over 5500 h at a current density and capacity of 10 mA cm-2 and 10 mAh cm-2, respectively. Additionally, LPF battery with CA@2500 separator shows an excellent capacity retention at 0.2 C with an average decay of 0.055 % per cycle. Moreover, a high capacity of 105 mAh g-1 is maintained after 500 cycles at 5 C with an average decay of only 0.027 % per cycle. This work achieved high stability of LMBs through simplified engineering.