RESUMO
Alternative splicing (AS), an important post-transcriptional regulation mechanism in eukaryotes, can significantly increase transcript diversity and contribute to gene expression regulation and many other complicated developmental processes. While plant gene AS events are well described, few studies have investigated the comprehensive regulation machinery of plant AS. Here, we use multi-omics to analyse peanut AS events. Using long-read isoform sequencing, 146 464 full-length non-chimeric transcripts were obtained, resulting in annotation corrections for 1782 genes and the identification of 4653 new loci. Using Iso-Seq RNA sequences, 271 776 unique splice junctions were identified, 82.49% of which were supported by transcriptome data. We characterized 50 977 polyadenylation sites for 23 262 genes, 12 369 of which had alternative polyadenylation sites. AS allows differential regulation of the same gene by miRNAs at the isoform level coupled with polyadenylation. In addition, we identified many long non-coding RNAs and fusion transcripts. There is a suppressed effect of 6mA on AS and gene expression. By analysis of chromatin structures, the genes located in the boundaries of topologically associated domains, proximal chromosomal telomere regions, inter- or intra-chromosomal loops were found to have more unique splice isoforms, higher expression, lower 6mA and more transposable elements (TEs) in their gene bodies than the other genes, indicating that chromatin interaction, 6mA and TEs play important roles in AS and gene expression. These results greatly refine the peanut genome annotation and contribute to the study of gene expression and regulation in peanuts. This work also showed AS is associated with multiple strategies for gene regulation.
Assuntos
Processamento Alternativo , Arachis , Processamento Alternativo/genética , Arachis/genética , Arachis/metabolismo , Regulação da Expressão Gênica de Plantas , Poliploidia , Metilação de DNA/genética , Poliadenilação/genética , Transcriptoma/genéticaRESUMO
KEY MESSAGE: Integrating GAB methods with high-throughput phenotyping, genome editing, and speed breeding hold great potential in designing future smart peanut cultivars to meet market and food supply demands. Cultivated peanut (Arachis hypogaea L.), a legume crop greatly valued for its nourishing food, cooking oil, and fodder, is extensively grown worldwide. Despite decades of classical breeding efforts, the actual on-farm yield of peanut remains below its potential productivity due to the complicated interplay of genotype, environment, and management factors, as well as their intricate interactions. Integrating modern genomics tools into crop breeding is necessary to fast-track breeding efficiency and rapid progress. When combined with speed breeding methods, this integration can substantially accelerate the breeding process, leading to faster access of improved varieties to farmers. Availability of high-quality reference genomes for wild diploid progenitors and cultivated peanuts has accelerated the process of gene/quantitative locus discovery, developing markers and genotyping assays as well as a few molecular breeding products with improved resistance and oil quality. The use of new breeding tools, e.g., genomic selection, haplotype-based breeding, speed breeding, high-throughput phenotyping, and genome editing, is probable to boost genetic gains in peanut. Moreover, renewed attention to efficient selection and exploitation of targeted genetic resources is also needed to design high-quality and high-yielding peanut cultivars with main adaptation attributes. In this context, the combination of genomics-assisted breeding (GAB), genome editing, and speed breeding hold great potential in designing future improved peanut cultivars to meet market and food supply demands.
Assuntos
Arachis , Fabaceae , Arachis/genética , Melhoramento Vegetal , Genômica , VerdurasRESUMO
Peanut (Arachis hypogaea L.) is an important food and feed crop worldwide and is affected by various biotic and abiotic stresses. The cellular ATP levels decrease significantly during stress as ATP molecules move to extracellular spaces, resulting in increased ROS production and cell apoptosis. Apyrases (APYs) are the nucleoside phosphatase (NPTs) superfamily members and play an important role in regulating cellular ATP levels under stress. We identified 17 APY homologs in A. hypogaea (AhAPYs), and their phylogenetic relationships, conserved motifs, putative miRNAs targeting different AhAPYs, cis-regulatory elements, etc., were studied in detail. The transcriptome expression data were used to observe the expression patterns in different tissues and under stress conditions. We found that the AhAPY2-1 gene showed abundant expression in the pericarp. As the pericarp is a key defense organ against environmental stress and promoters are the key elements regulating gene expression, we functionally characterized the AhAPY2-1 promoter for its possible use in future breeding programs. The functional characterization of AhAPY2-1P in transgenic Arabidopsis plants showed that it effectively regulated GUS gene expression in the pericarp. GUS expression was also detected in flowers of transgenic Arabidopsis plants. Overall, these results strongly suggest that APYs are an important future research subject for peanut and other crops, and AhPAY2-1P can be used to drive the resistance-related genes in a pericarp-specific manner to enhance the defensive abilities of the pericarp.
Assuntos
Arabidopsis , Fabaceae , Arachis/genética , Apirase/genética , Filogenia , Arabidopsis/genética , Melhoramento Vegetal , Fabaceae/genética , Plantas Geneticamente Modificadas , Trifosfato de Adenosina , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: Tobacco is an important economic crop, but the quality and yield have been severely impaired by bacterial wilt disease (BWD) caused by Ralstonia solanacearum. METHODS AND RESULTS: Here, we describe a transgenic approach to prevent BWD in tobacco plants. A new root-specific promoter of an NtR12 gene was successfully cloned. The NtR12 promoter drove GUS reporter gene expression to a high level in roots but to less extent in stems, and no significant expression was detected in leaves. The Ribosome-inactivating proteins (RIP) gene from Momordica charantia was also cloned, and its ability to inhibit Ralstonia solanacearum was evaluated using RIP protein produced by the prokaryotic expression system. The RIP gene was constructed downstream of the NtR12 promoter and transformed into the tobacco cultivar "Cuibi No. 1" (CB-1), resulting in many descendants. The resistance against BWD was significantly improved in transgenic tobacco lines expressing NtR12::RIP. CONCLUSION: This study confirms that the RIP gene confers resistance to BWD and the NtR12 as a new promoter for its specific expression in root and stem. Our findings pave a novel avenue for transgenic engineering to prevent the harmful impact of diseases and pests in roots and stems.
Assuntos
Nicotiana , Ralstonia solanacearum , Nicotiana/metabolismo , Proteínas Inativadoras de Ribossomos/genética , Proteínas Inativadoras de Ribossomos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Regiões Promotoras Genéticas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genéticaRESUMO
KEY MESSAGE: Two novel resistant QTLs mapped and candidate genes identified for Aspergillus flavus resistance in cultivated peanut using SLAF-seq. Aflatoxin contamination in peanuts caused by Aspergillus flavus is a serious food safety issue for human health around the world. Host plant resistance to fungal infection and reduction in aflatoxin are crucial for mitigating this problem. Identification of the resistance-linked markers can be used in marker-assisted breeding for varietal development. Here we report construction of two high-density genetic linkage maps with 1975 SNP loci and 5022 SNP loci, respectively. Two consistent quantitative trait loci (QTL) were identified as qRAF-3-1 and qRAF-14-1, which located on chromosomes A03 and B04, respectively. QTL qRAF-3-1 was mapped within 1.67 cM and had more than 19% phenotypic variance explained (PVE), while qRAF-14-1 was located within 1.34 cM with 5.15% PVE. While comparing with the reference genome, the mapped QTLs, qRAF-3-1 and qRAF-14-1, were located within a physical distance of 1.44 Megabase pair (Mbp) and 2.22 Mbp, harboring 67 and 137 genes, respectively. Among the identified candidate genes, six genes with the same function were found within both QTLs regions. In addition, putative disease resistance RPP13-like protein 1 (RPP13), lipoxygenase (Lox), WRKY transcription factor (WRKY) and cytochrome P450 71B34 genes were also identified. Using microarray analysis, genes responded to A. flavus infection included coding for RPP13, pentatricopeptide repeat-containing-like protein, and Lox which may be possible candidate genes for resistance to A. flavus. The QTLs and candidate genes will further facilitate marker development and validation of genes for deployment in the molecular breeding programs against A. flavus in peanuts.
Assuntos
Arachis/genética , Aspergillus flavus/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Aflatoxinas/química , Arachis/microbiologia , Mapeamento Cromossômico , Biologia Computacional , Ligação Genética , Marcadores Genéticos , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características QuantitativasRESUMO
BACKGROUND: Peanut embryo development is a complex process involving a series of gene regulatory pathways and is easily affected by various elements in the soil. Calcium deficiency in the soil induces early embryo abortion in peanut, which provides an opportunity to determine the mechanism underlying this important event. MicroRNA (miRNA)-guided target gene regulation is vital to a wide variety of biological processes. However, whether miRNAs participate in peanut embryo abortion under calcium deficiency has yet to be explored. RESULTS: In this study, with the assistance of a recently established platform for genome sequences of wild peanut species, we analyzed small RNAs (sRNAs) in early peanut embryos. A total of 29 known and 132 potential novel miRNAs were discovered in 12 peanut-specific miRNA families. Among the identified miRNAs, 87 were differentially expressed during early embryo development under calcium deficiency and sufficiency conditions, and 117 target genes of the differentially expressed miRNAs were identified. Integrated analysis of miRNAs and transcriptome expression revealed 52 differentially expressed target genes of 20 miRNAs. The expression profiles for some differentially expressed targets by gene chip analysis were consistent with the transcriptome sequencing results. Together, our results demonstrate that seed/embryo development-related genes such as TCP3, AP2, EMB2750, and GRFs; cell division and proliferation-related genes such as HsfB4 and DIVARICATA; plant hormone signaling pathway-related genes such as CYP707A1 and CYP707A3, with which abscisic acid (ABA) is involved; and BR1, with which brassinosteroids (BRs) are involved, were actively modulated by miRNAs during early embryo development. CONCLUSIONS: Both a number of miRNAs and corresponding target genes likely playing key roles in the regulation of peanut embryo abortion under calcium deficiency were identified. These findings provide for the first time new insights into miRNA-mediated regulatory pathways involved in peanut embryo abortion under calcium deficiency.
Assuntos
Arachis/embriologia , Arachis/genética , Cálcio/fisiologia , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Arachis/anatomia & histologia , Arachis/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , RNA Mensageiro/metabolismo , Sementes/anatomia & histologia , Sementes/genética , Sementes/metabolismoRESUMO
Bacterial wilt caused by Ralstonia solanacearum is a devastating disease affecting hundreds of plant species, yet the host factors remain poorly characterized. The leucine-rich repeat receptor-like kinase gene AhRLK1, characterized as CLAVATA1, was found to be up-regulated in peanut upon inoculation with R. solanacearum. The AhRLK1 protein was localized in the plasma membrane and cell wall. qPCR results showed AhRLK1 was induced in a susceptible variety but little changed in a resistant cultivar after inoculated with R. solanacearum. Hormones such as salicylic acid, abscisic acid, methyl jasmonate, and ethephon induced AhRLK1 expression. In contrast, AhRLK1 expression was down-regulated under cold and drought treatments. Transient overexpression of AhRLK1 led to a hypersensitive response (HR) in Nicotiana benthamiana. Furthermore, AhRLK1 overexpression in tobacco significantly increased the resistance to R. solanacearum. Besides, the transcripts of most representative defense responsive genes in HR and hormone signal pathways were significantly increased in the transgenic lines. EDS1 and PAD4 in the R gene signaling pathway were also up-regulated, but NDR1 was down-regulated. Accordingly, AhRLK1 may increase the defense response to R. solanacearum via HR and hormone defense signaling, in particular through the EDS1 pathway of R gene signaling. These results provide a new understanding of the CLAVATA1 function and will contribute to genetic enhancement of peanut.
Assuntos
Arachis/genética , Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Ralstonia solanacearum/fisiologia , Arachis/metabolismo , Resistência à Doença , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Nicotiana/genéticaRESUMO
Bacterial wilt caused by Ralstonia solanacearum is a ruinous soilborne disease affecting more than 450 plant species. Efficient control methods for this disease remain unavailable to date. This study characterized a novel nucleotide-binding site-leucine-rich repeat resistance gene AhRRS5 from peanut, which was up-regulated in both resistant and susceptible peanut cultivars in response to R. solanacearum. The product of AhRRS5 was localized in the nucleus. Furthermore, treatment with phytohormones such as salicylic acid (SA), abscisic acid (ABA), methyl jasmonate (MeJA) and ethephon (ET) increased the transcript level of AhRRS5 with diverse responses between resistant and susceptible peanuts. Abiotic stresses such as drought and cold conditions also changed AhRRS5 expression. Moreover, transient overexpression induced hypersensitive response in Nicotiana benthamiana. Overexpression of AhRRS5 significantly enhanced the resistance of heterogeneous tobacco to R. solanacearum, with diverse resistance levels in different transgenic lines. Several defence-responsive marker genes in hypersensitive response, including SA, JA and ET signals, were considerably up-regulated in the transgenic lines as compared with the wild type inoculated with R. solanacearum. Nonexpressor of pathogenesis-related gene 1 (NPR1) and non-race-specific disease resistance 1 were also up-regulated in response to the pathogen. These results indicate that AhRRS5 participates in the defence response to R. solanacearum through the crosstalk of multiple signalling pathways and the involvement of NPR1 and R gene signals for its resistance. This study may guide the resistance enhancement of peanut and other economic crops to bacterial wilt disease.
Assuntos
Arachis/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Nicotiana/genética , Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/patogenicidade , Ácido Abscísico/farmacologia , Acetatos/farmacologia , Sequência de Bases , Núcleo Celular/efeitos dos fármacos , Temperatura Baixa , Ciclopentanos/farmacologia , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/efeitos dos fármacos , Vetores Genéticos , Compostos Organofosforados/farmacologia , Oxilipinas/farmacologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Plantas Geneticamente Modificadas , Ácido Salicílico/farmacologia , Alinhamento de Sequência , Estresse Fisiológico , Fatores de Transcrição/genética , Regulação para CimaRESUMO
KEY MESSAGE: A novel root-specific gene and its upstream promoter were cloned and characterized for potential application in root-specific expression of transgenes. The root is an important plant organ subjected to many biotic and abiotic stresses, such as infection by Ralstonia solanacearum. To isolate tobacco root-specific promoters for genetic applications, microarray screening was performed to identify genes highly and specifically expressed in the root. One root-specific gene encoding an extensin-like protein (NtREL1) was isolated, and its expression pattern was further characterized by both microarray analysis and reverse transcription-polymerase chain reaction. NtREL1 was highly expressed only in roots but not in any other organ. NtREL1 expression was affected by hormone treatment (salicylic acid, abscisic acid, and ethephon) as well as low temperature, drought, and R. solanacearum infection. A full-length 849 bp cDNA containing a 657-nucleotide open reading frame was cloned by Rapid Amplification of cDNA Ends. Subsequently, a fragment of 1,574 bp upstream of NtREL1 was isolated by flanking PCR and named pNtREL1. This promoter fragment contains TATA, GATA, and CAAT-boxes, the basic elements of a promoter, and six root-specific expression elements, namely OSE1, OSE2, ROOTMOTIFTAPOX1, SURECOREATSULTR11, P1BS, and WUSATAg. A construct containing the bacterial uidA reporter gene (ß-glucuronidase, GUS) driven by the pNtREL1 promoter was transformed into tobacco plants. GUS staining was only detected in the root, but not in leaves and stems. Additionally, transgenic tobacco plants containing peanut resveratrol synthase gene (AhRS) driven by the pNtREL1 promoter produced resveratrol only in the root. Thus, the pNtREL1 promoter can be used to direct root-specific expression of target genes to protect the root from stress or for biological studies.
Assuntos
Genes de Plantas , Nicotiana/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Regiões Promotoras Genéticas , Sequência de Aminoácidos , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Glucuronidase/metabolismo , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Resveratrol , Estilbenos/metabolismo , TransgenesRESUMO
Cultivated peanut (Arachis hypogaea) is a leading protein and oil-providing crop and food source in many countries. At the same time, it is affected by a number of biotic and abiotic stresses. O-methyltransferases (OMTs) play important roles in secondary metabolism, biotic and abiotic stress tolerance. However, the OMT genes have not been comprehensively analyzed in peanut. In this study, we performed a genome-wide investigation of A. hypogaea OMT genes (AhOMTs). Gene structure, motifs distribution, phylogenetic history, genome collinearity and duplication of AhOMTs were studied in detail. Promoter cis-elements, protein-protein interactions, and micro-RNAs targeting AhOMTs were also predicted. We also comprehensively studied their expression in different tissues and under different stresses. We identified 116 OMT genes in the genome of cultivated peanut. Phylogenetically, AhOMTs were divided into three groups. Tandem and segmental duplication events played a role in the evolution of AhOMTs, and purifying selection pressure drove the duplication process. AhOMT promoters were enriched in several key cis-elements involved in growth and development, hormones, light, and defense-related activities. Micro-RNAs from 12 different families targeted 35 AhOMTs. GO enrichment analysis indicated that AhOMTs are highly enriched in transferase and catalytic activities, cellular metabolic and biosynthesis processes. Transcriptome datasets revealed that AhOMTs possessed varying expression levels in different tissues and under hormones, water, and temperature stress. Expression profiling based on qRT-PCR results also supported the transcriptome results. This study provides the theoretical basis for further work on the biological roles of AhOMT genes for developmental and stress responses.
RESUMO
Bacterial wilt disease (BWD), caused by Ralstonia solanacearum is a major challenge for peanut production in China and significantly affects global peanut field productivity. It is imperative to identify genetic loci and putative genes controlling resistance to R. solanacearum (RRS). Therefore, a sequencing-based trait mapping approach termed "QTL-seq" was applied to a recombination inbred line population of 581 individuals from the cross of Yueyou 92 (resistant) and Xinhuixiaoli (susceptible). A total of 381,642 homozygous single nucleotide polymorphisms (SNPs) and 98,918 InDels were identified through whole genome resequencing of resistant and susceptible parents for RRS. Using QTL-seq analysis, a candidate genomic region comprising of 7.2 Mb (1.8-9.0 Mb) was identified on chromosome 12 which was found to be significantly associated with RRS based on combined Euclidean Distance (ED) and SNP-index methods. This candidate genomic region had 180 nonsynonymous SNPs and 14 InDels that affected 75 and 11 putative candidate genes, respectively. Finally, eight nucleotide binding site leucine rich repeat (NBS-LRR) putative resistant genes were identified as the important candidate genes with high confidence. Two diagnostic SNP markers were validated and revealed high phenotypic variation in the different resistant and susceptible RIL lines. These findings advocate the expediency of the QTL-seq approach for precise and rapid identification of candidate genomic regions, and the development of diagnostic markers that are applicable in breeding disease-resistant peanut varieties.
RESUMO
Peanut is an important food and feed crop, providing oil and protein nutrients. Germins and germin-like proteins (GLPs) are ubiquitously present in plants playing numerous roles in defense, growth and development, and different signaling pathways. However, the GLP members have not been comprehensively studied in peanut at the genome-wide scale. We carried out a genome-wide identification of the GLP genes in peanut genome. GLP members were identified comprehensively, and gene structure, genomic positions, motifs/domains distribution patterns, and phylogenetic history were studied in detail. Promoter Cis-elements, gene duplication, collinearity, miRNAs, protein-protein interactions, and expression were determined. A total of 84 GLPs (AhGLPs ) were found in the genome of cultivated peanut. These GLP genes were clustered into six groups. Segmental duplication events played a key role in the evolution of AhGLPs, and purifying selection pressure was underlying the duplication process. Most AhGLPs possessed a well-maintained gene structure and motif organization within the same group. The promoter regions of AhGLPs contained several key cis-elements responsive to 'phytohormones', 'growth and development', defense, and 'light induction'. Seven microRNAs (miRNAs) from six families were found targeting 25 AhGLPs. Gene Ontology (GO) enrichment analysis showed that AhGLPs are highly enriched in nutrient reservoir activity, aleurone grain, external encapsulating structure, multicellular organismal reproductive process, and response to acid chemicals, indicating their important biological roles. AhGLP14, AhGLP38, AhGLP54, and AhGLP76 were expressed in most tissues, while AhGLP26, AhGLP29, and AhGLP62 showed abundant expression in the pericarp. AhGLP7, AhGLP20, and AhGLP21, etc., showed specifically high expression in embryo, while AhGLP12, AhGLP18, AhGLP40, AhGLP78, and AhGLP82 were highly expressed under different hormones, water, and temperature stress. The qRT-PCR results were in accordance with the transcriptome expression data. In short, these findings provided a foundation for future functional investigations on the AhGLPs for peanut breeding programs.
RESUMO
Peanut embryo development is easily affected by a variety of nutrient elements in the soil, especially the calcium level. Peanut produces abortive embryos in calcium-deficient soil, but underlying mechanism remains unclear. Thus, identifying key transcriptional regulators and their associated regulatory networks promises to contribute to a better understanding of this process. In this study, cellular biology and gene expression analyses were performed to investigate peanut embryo development with the aim to discern the global architecture of gene regulatory networks underlying peanut embryo abortion under calcium deficiency conditions. The endomembrane systems tended to disintegrate, impairing cell growth and starch, protein and lipid body accumulation, resulting in aborted seeds. RNA-seq analysis showed that the gene expression profile in peanut embryos was significantly changed under calcium deficiency. Further analysis indicated that multiple signal pathways were involved in the peanut embryo abortion. Differential expressed genes (DEGs) related to cytoplasmic free Ca2+ were significantly altered. DEGs in plant hormone signaling pathways tended to be associated with increased IAA and ethylene but with decreased ABA, gibberellin, cytokinin, and brassinosteroid levels. Certain vital genes, including apoptosis-inducing factor, WRKYs and ethylene-responsive transcription factors, were up-regulated, while key regulators of embryo development, such as TCP4, WRI1, FUS3, ABI3, and GLK1 were down-regulated. Weighted gene co-expression network analysis (WGCNA) identified 16 significant modules associated with the plant hormone signaling, MAPK signaling, ubiquitin mediated proteolysis, reserve substance biosynthesis and metabolism pathways to decipher regulatory network. The most significant module was darkolivegreen2 and FUS3 (AH06G23930) had the highest connectivity among this module. Importantly, key transcription factors involved in embryogenesis or ovule development including TCP4, GLK1, ABI3, bHLH115, MYC2, etc., were also present in this module and down regulated under calcium deficiency. This study presents the first global view of the gene regulatory network involved in peanut embryo abortion under calcium deficiency conditions and lays foundation for improving peanut tolerances to calcium deficiency by a targeted manipulation of molecular breeding.
RESUMO
Peanut (Arachis hypogaea L.) is an important oil and food legume crop grown in tropical and subtropical areas of the world. As a geocarpic crop, it is affected by many soil-borne diseases and pathogens. The pericarp, an inedible part of the seed, acts as the first layer of defense against biotic and abiotic stresses. Pericarp promoters could drive the defense-related genes specific expression in pericarp for the defense application. Here, we identified a pericarp-abundant promoter (AhGLP17-1P) through microarray and transcriptome analysis. Besides the core promoter elements, several other important cis-elements were identified using online promoter analysis tools. Semiquantitative and qRT-PCR analyses validated that the AhGLP17-1 gene was specifically expressed only in the pericarp, and no expression was detected in leaves, stem, roots, flowers, gynophore/peg, testa, and embryo in peanut. Transgenic Arabidopsis plants showed strong GUS expression in siliques, while GUS staining was almost absent in remaining tissues, including roots, seedlings, leaf, stem, flowers, cotyledons, embryo, and seed coat confirmed its peanut expressions. Quantitative expression of the GUS gene also supported the GUS staining results. The results strongly suggest that this promoter can drive foreign genes' expression in a pericarp-abundant manner. This is the first study on the functional characterization of the pericarp-abundant promoters in peanut. The results could provide practical significance to improve the resistance of peanut, and other crops for seed protection uses.
RESUMO
High oil and protein content make tetraploid peanut a leading oil and food legume. Here we report a high-quality peanut genome sequence, comprising 2.54 Gb with 20 pseudomolecules and 83,709 protein-coding gene models. We characterize gene functional groups implicated in seed size evolution, seed oil content, disease resistance and symbiotic nitrogen fixation. The peanut B subgenome has more genes and general expression dominance, temporally associated with long-terminal-repeat expansion in the A subgenome that also raises questions about the A-genome progenitor. The polyploid genome provided insights into the evolution of Arachis hypogaea and other legume chromosomes. Resequencing of 52 accessions suggests that independent domestications formed peanut ecotypes. Whereas 0.42-0.47 million years ago (Ma) polyploidy constrained genetic variation, the peanut genome sequence aids mapping and candidate-gene discovery for traits such as seed size and color, foliar disease resistance and others, also providing a cornerstone for functional genomics and peanut improvement.