Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402357, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881321

RESUMO

2D heterostructuring is a versatile methodology for designing nanoarchitecture catalytic systems that allow for reconstruction and modulation of interfaces and electronic structures. However, catalysts with such structures are extremely scarce due to limited synthetic strategies. Here, a highly ordered 2D Ru/Si/Ru/Si… nano-heterostructures (RSHS) is reported by acid etching of the LaRuSi electride. RSHS shows a superior electrocatalytic activity for hydrogen evolution with an overpotential of 14 mV at 10 mA cm-2 in alkaline media. Both experimental analysis and first-principles calculations demonstrate that the electronic states of Ru can be tuned by strong interactions of the interfacial Ru-Si, leading to an optimized hydrogen adsorption energy. Moreover, due to the synergistic effect of Ru and Si, the energy barrier of water dissociation is significantly reduced. The well-organized superlattice structure will provide a paradigm for construction of efficient catalysts with tunable electronic states and dual active sites.

2.
Nano Lett ; 21(18): 7753-7760, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516143

RESUMO

Tuning intermediate adsorption energy by shifting the d-band center offers a powerful strategy to tailor the reactivity of metal catalysts. Here we report a potential sweep method to grow Pd layer-by-layer on Au with the capability to in situ measure the surface structure through an ethanol oxidation reaction. Spectroscopic characterizations reveal charge-transfer induced valence band restructuring in the Pd overlayer, which shifts the d-band center away from the Fermi level compared to bulk Pd. Precise overlayer control gives the optimal bimetallic surface of two monolayers (ML) Pd on Au, which exhibits more than 370-fold mass activity enhancement in oxygen reduction reaction (at 0.9 V vs. reversible hydrogen electrode) and 40 mV increase in half-wave potential compared to the Pt/C. Tested in a homemade Zn-air battery, the 2-ML-Pd/Au/C exhibits a maximum power density of 296 mW/cm2 and specific activity of 804 mAh/gZn, much higher than Pt/C with the same catalyst loading amount.

3.
Nano Lett ; 20(6): 4278-4285, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32391698

RESUMO

Catalytic water splitting driven by renewable electricity offers a promising strategy to produce molecular hydrogen, but its efficiency is severely restricted by the sluggish kinetics of the anodic water oxidation reaction. Amorphous catalysts are reported to show better activities of water oxidation than their crystalline counterparts, but little is known about the underlying origin, which retards the development of high-performance amorphous oxygen evolution reaction catalysts. Herein, on the basis of cyclic voltammetry, electrochemical impedance spectroscopy, isotope labeling, and in situ X-ray absorption spectroscopy studies, we demonstrate that an amorphous catalyst can be electrochemically activated to expose active sites in the bulk thanks to the short-range order of the amorphous structure, which greatly increases the number of active sites and thus improves the electrocatalytic activity of the amorphous catalyst in water oxidation.

4.
Angew Chem Int Ed Engl ; 59(2): 798-803, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31657106

RESUMO

Designing effective electrocatalysts for the carbon dioxide reduction reaction (CO2 RR) is an appealing approach to tackling the challenges posed by rising CO2 levels and realizing a closed carbon cycle. However, fundamental understanding of the complicated CO2 RR mechanism in CO2 electrocatalysis is still lacking because model systems are limited. We have designed a model nickel single-atom catalyst (Ni SAC) with a uniform structure and well-defined Ni-N4 moiety on a conductive carbon support with which to explore the electrochemical CO2 RR. Operando X-ray absorption near-edge structure spectroscopy, Raman spectroscopy, and near-ambient X-ray photoelectron spectroscopy, revealed that Ni+ in the Ni SAC was highly active for CO2 activation, and functioned as an authentic catalytically active site for the CO2 RR. Furthermore, through combination with a kinetics study, the rate-determining step of the CO2 RR was determined to be *CO2 - +H+ →*COOH. This study tackles the four challenges faced by the CO2 RR; namely, activity, selectivity, stability, and dynamics.

5.
J Am Chem Soc ; 141(7): 3014-3023, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30673269

RESUMO

Oxygen electrochemistry plays a critical role in clean energy technologies such as fuel cells and electrolyzers, but the oxygen evolution reaction (OER) severely restricts the efficiency of these devices due to its slow kinetics. Here, we show that via incorporation of lithium ion into iridium oxide, the thus obtained amorphous iridium oxide (Li-IrO x) demonstrates outstanding water oxidation activity with an OER current density of 10 mA/cm2 at 270 mV overpotential for 10 h of continuous operation in acidic electrolyte. DFT calculations show that lithium incorporation into iridium oxide is able to lower the activation barrier for OER. X-ray absorption characterizations indicate that both amorphous Li-IrO x and rutile IrO2 own similar [IrO6] octahedron units but have different [IrO6] octahedron connection modes. Oxidation of iridium to higher oxidation states along with shrinkage in the Ir-O bond was observed by in situ X-ray absorption spectroscopy on amorphous Li-IrO x, but not on rutile IrO2 under OER operando conditions. The much more "flexible" disordered [IrO6] octahedrons with higher oxidation states in amorphous Li-IrO x as compared to the periodically interconnected "rigid" [IrO6] octahedrons in crystalline IrO2 are able to act as more electrophilic centers and thus effectively promote the fast turnover of water oxidation.

6.
Angew Chem Int Ed Engl ; 58(25): 8536-8540, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30985055

RESUMO

Cross-relaxation among sensitizers is commonly regarded as deleterious in fluorescent materials, although favorable in photothermal agents. Herein, we coated Prussian blue (PB) on NaNdF4 nanoparticles to fabricate core-shell nanocomplexes with new cross relaxation pathways between the ladder-like energy levels of Nd3+ ions and continuous energy band of PB. The photothermal conversion efficiency was improved exceptionally and the mechanism of the enhanced photothermal effect was investigated. In vivo photoacoustic imaging and photothermal therapy demonstrated the potential of the enhanced photothermal agents. Moreover, the concept of generating new cross-relaxation pathways between different materials is proposed to contribute to the design of all kinds of enhanced photothermal agents.

7.
J Am Chem Soc ; 140(39): 12469-12475, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30165734

RESUMO

The Fenton-like process presents one of the most promising strategies to generate reactive oxygen-containing radicals to deal with the ever-growing environmental pollution. However, developing improved catalysts with adequate activity and stability is still a long-term goal for practical application. Herein, we demonstrate single cobalt atoms anchored on porous N-doped graphene with dual reaction sites as highly reactive and stable Fenton-like catalysts for efficient catalytic oxidation of recalcitrant organics via activation of peroxymonosulfate (PMS). Our experiments and density functional theory (DFT) calculations show that the CoN4 site with a single Co atom serves as the active site with optimal binding energy for PMS activation, while the adjacent pyrrolic N site adsorbs organic molecules. The dual reaction sites greatly reduce the migration distance of the active singlet oxygen produced from PMS activation and thus improve the Fenton-like catalytic performance.

8.
Angew Chem Int Ed Engl ; 54(38): 11231-5, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26235387

RESUMO

Development of efficient and affordable electrocatalysts in neutral solutions is paramount importance for the renewable energy. Herein, we report that the oxygen evolution reaction (OER) performance of Co3 S4 under neutral conditions can be enhanced by exposed octahedral planes and self-adapted spin states in atomically thin nanosheets. A HAADF image clearly confirmed that the active octahedra with Jahn-Teller distortions were exposed exclusively. Most importantly, in the atomically thin nanosheets, the spin states of Co(3+) in the octahedral self-adapt from low-spin to high-spin states. As a result, the synergistic effect endow the Co3 S4 nanosheets with superior OER performance, with exceptional low onset overpotentials of circa 0.31 V in neutral solutions, which is state-of-the-art among inorganic non-noble metal compounds.

9.
Phys Chem Chem Phys ; 16(38): 20909-14, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25171684

RESUMO

The ability to suppress the recombination of the photoinduced charges is the key prerequisite for an excellent photocatalyst, which has attracted extensive and continuous interest in the field of photocatalysis. Herein, we presented a convenient strategy for the one-step selective synthesis of ultrathin BiOBr nanosheets with atomic thickness through a simple solvothermal method. These ultrathin BiOBr nanosheets not only show high exposure percentage of active (001) facets but also have an optimized band structure, which synergistically facilitates the electron-hole pair separation to realize significantly promoted visible-light photocatalytic activity. Our results provide a new avenue and direction for the design of photocatalysts with high visible-light photocatalytic performance.

10.
Chem Sci ; 12(20): 6800-6819, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34123313

RESUMO

The electrochemical carbon dioxide reduction reaction (CO2RR) offers a promising solution to mitigate carbon emission and at the same time generate valuable carbonaceous chemicals/fuels. Single atom catalysts (SACs) are encouraging to catalyze the electrochemical CO2RR due to the tunable electronic structure of the central metal atoms, which can regulate the adsorption energy of reactants and reaction intermediates. Moreover, SACs form a bridge between homogeneous and heterogeneous catalysts, providing an ideal platform to explore the reaction mechanism of electrochemical reactions. In this review, we first discuss the strategies for promoting the CO2RR performance, including suppression of the hydrogen evolution reaction (HER), generation of C1 products and formation of C2+ products. Then, we summarize the recent developments in regulating the structure of SACs toward the CO2RR based on the above aspects. Finally, several issues regarding the development of SACs for the CO2RR are raised and possible solutions are provided.

11.
ACS Appl Mater Interfaces ; 12(23): 25991-26001, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32428393

RESUMO

Developing highly active and stable water oxidation catalysts with reduced cost in acidic media plays a critical role in clean energy technologies such as fuel cells and electrolyzers. Precious iridium-based oxides are still the only oxygen evolution reaction (OER) catalysts with reasonable activity and stability in acid. Herein, we design iridium-tungsten composites with a metallic tungsten-rich core and an iridium-rich surface by the sol-gel method followed by hydrogen reduction. The thus obtained iridium-tungsten catalyst shows much higher intrinsic water oxidation activity (100 mA/mgIr at an overpotential of 290 mV) and stability (100 h at 10 mA/cm2geom) together with reduced iridium content (33 wt % only) as compared with pure iridium oxide. An operando method using H2O2 as a probe molecule is developed to determine the relative adsorption strength of the reaction intermediates (*OH and *OOH) in the OER process. Detailed characterization shows that the tungsten-incorporated surface not only modulates the adsorption energy of oxygen intermediates on iridium but also enhances the stability of iridium species in acid, while the metallic tungsten core exhibits high electrical conductivity, all of which collectively give rise to the much enhanced catalytic performance of iridium-tungsten composite in acidic water oxidation. A single-membrane electrode assembly is further prepared to demonstrate the advantages and potential application of iridium-tungsten composite in practical proton exchange membrane electrolyzers.

12.
Nat Commun ; 11(1): 4246, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843622

RESUMO

Water electrolysis offers a promising energy conversion and storage technology for mitigating the global energy and environmental crisis, but there still lack highly efficient and pH-universal electrocatalysts to boost the sluggish kinetics for both cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). Herein, we report uniformly dispersed iridium nanoclusters embedded on nitrogen and sulfur co-doped graphene as an efficient and robust electrocatalyst for both HER and OER at all pH conditions, reaching a current density of 10 mA cm-2 with only 300, 190 and 220 mV overpotential for overall water splitting in neutral, acidic and alkaline electrolyte, respectively. Based on probing experiments, operando X-ray absorption spectroscopy and theoretical calculations, we attribute the high catalytic activities to the optimum bindings to hydrogen (for HER) and oxygenated intermediate species (for OER) derived from the tunable and favorable electronic state of the iridium sites coordinated with both nitrogen and sulfur.

13.
Biomater Sci ; 8(10): 2878-2886, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32296788

RESUMO

Tuning the configuration of lanthanide-doped upconversion nanoparticles (UCNPs) has been proven to be an effective approach to enhance upconversion (UC) efficiency, especially for neodymium (Nd3+)-sensitized UCNPs. Rational configuration design can spatially separate activators and sensitizers, achieving the evolution from single core to multilayer structures. However, optimizing multiphoton UC emission via configuration modulation, especially in the ultraviolet range, is yet to be fully investigated. In this work, thickness tuning of the sensitizing layer containing Nd3+ ions and the inert layer containing gadolinium ions at a fixed combined thickness of 5 nm in tetralayer UCNPs to exclude the size effect is reported for the first time. The optimal thickness of sensitizing and inert layers was determined to be 3 and 2 nm respectively, showing a new strategy of balancing sensitization and surface passivation to enhance 4-photon (360 nm) emission. Although 3-photon emission (475 nm) is mainly influenced by the overall size, its emission intensity remains similar in all the tetralayer UCNPs. Additionally, an 808 nm cross-linked hydrogel has been demonstrated as a potential near-infrared activated tissue sealant. Our results have uncovered the structural parameters for optimal ultraviolet UC emissions and elucidated the strategic importance of nano-configuration design to minimize the energy loss in the high-photon UC process.


Assuntos
Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Nanopartículas/química , Neodímio/química , Adesivos Teciduais/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/farmacologia , Humanos , Hidrogéis/síntese química , Hidrogéis/farmacologia , Raios Infravermelhos , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Adesivos Teciduais/síntese química , Adesivos Teciduais/farmacologia , Raios Ultravioleta
14.
Nat Commun ; 10(1): 1779, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992441

RESUMO

It is highly profitable to transform glycerol - the main by-product from biodiesel production to high value-added chemicals. In this work, we develop a photoelectrochemical system based on nanoporous BiVO4 for selective oxidation of glycerol to 1,3-dihydroxyacetone - one of the most valuable derivatives of glycerol. Under AM 1.5G front illumination (100 mW cm-2) in an acidic medium (pH = 2) without adscititious oxidant, the nanoporous BiVO4 photoanode achieves a glycerol oxidation photocurrent density of 3.7 mA cm-2 at a potential of 1.2 V versus RHE with 51% 1,3-dihydroxyacetone selectivity, equivalent to a production rate of 200 mmol of 1,3-dihydroxyacetone per m2 of illumination area in one hour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA