Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Appl Environ Microbiol ; 90(6): e0066224, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38752833

RESUMO

Fungal-bacterial consortia enhance organic pollutant removal, but the underlying mechanisms are unclear. We used stable isotope probing (SIP) to explore the mechanism of bioaugmentation involved in polycyclic aromatic hydrocarbon (PAH) biodegradation in petroleum-contaminated soil by introducing the indigenous fungal strain Aspergillus sp. LJD-29 and the bacterial strain Pseudomonas XH-1. While each strain alone increased phenanthrene (PHE) degradation, the simultaneous addition of both strains showed no significant enhancement compared to treatment with XH-1 alone. Nonetheless, the assimilation effect of microorganisms on PHE was significantly enhanced. SIP revealed a role of XH-1 in PHE degradation, while the absence of LJD-29 in 13C-DNA indicated a supporting role. The correlations between fungal abundance, degradation efficiency, and soil extracellular enzyme activity indicated that LJD-29, while not directly involved in PHE assimilation, played a crucial role in the breakdown of PHE through extracellular enzymes, facilitating the assimilation of metabolites by bacteria. This observation was substantiated by the results of metabolite analysis. Furthermore, the combination of fungus and bacterium significantly influenced the diversity of PHE degraders. Taken together, this study highlighted the synergistic effects of fungi and bacteria in PAH degradation, revealed a new fungal-bacterial bioaugmentation mechanism and diversity of PAH-degrading microorganisms, and provided insights for in situ bioremediation of PAH-contaminated soil.IMPORTANCEThis study was performed to explore the mechanism of bioaugmentation by a fungal-bacterial consortium for phenanthrene (PHE) degradation in petroleum-contaminated soil. Using the indigenous fungal strain Aspergillus sp. LJD-29 and bacterial strain Pseudomonas XH-1, we performed stable isotope probing (SIP) to trace active PHE-degrading microorganisms. While inoculation of either organism alone significantly enhanced PHE degradation, the simultaneous addition of both strains revealed complex interactions. The efficiency plateaued, highlighting the nuanced microbial interactions. SIP identified XH-1 as the primary contributor to in situ PHE degradation, in contrast to the limited role of LJD-29. Correlations between fungal abundance, degradation efficiency, and extracellular enzyme activity underscored the pivotal role of LJD-29 in enzymatically facilitating PHE breakdown and enriching bacterial assimilation. Metabolite analysis validated this synergy, unveiling distinct biodegradation mechanisms. Furthermore, this fungal-bacterial alliance significantly impacted PHE-degrading microorganism diversity. These findings advance our understanding of fungal-bacterial bioaugmentation and microorganism diversity in polycyclic aromatic hydrocarbon (PAH) degradation as well as providing insights for theoretical guidance in the in situ bioremediation of PAH-contaminated soil.


Assuntos
Aspergillus , Biodegradação Ambiental , Consórcios Microbianos , Fenantrenos , Microbiologia do Solo , Poluentes do Solo , Fenantrenos/metabolismo , Poluentes do Solo/metabolismo , Aspergillus/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/metabolismo , Fungos/genética , Fungos/classificação
2.
Addict Biol ; 29(2): e13361, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38380780

RESUMO

BACKGROUND: The relationship between fibrosis-4 (FIB-4) index and all-cause mortality in critically ill patients with alcohol use disorder (AUD) is unclear. The present study aimed to investigate the predictive ability of FIB-4 for all-cause mortality in critically ill AUD patients and the association between them. METHODS: A total of 2528 AUD patients were included using the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. FIB-4 was calculated for each patient using the existing formula. The patients were equally divided into four groups based on the quartiles of FIB-4. Multivariate logistic regression and Cox proportional hazard model were used to evaluate the association of FIB-4 with in-hospital mortality, 28-day mortality and 1-year mortality. Kaplan-Meier curves were used to analyse the incidence of 28-day mortality among four groups. RESULTS: FIB-4 was positively associated with 28-day mortality of AUD patients with hazard ratio (HR) of 1.354 [95% confidence interval (CI) 1.192-1.538]. There were similar trends in the in-hospital mortality [odds ratio (OR): 1.440, 95% CI (1.239-1.674)] and 1-year mortality [HR: 1.325, 95% CI (1.178-1.490)]. CONCLUSION: Increased FIB-4 is associated with greater in-hospital mortality, 28-day mortality and 1-year mortality in critically ill AUD patients.


Assuntos
Alcoolismo , Humanos , Estado Terminal , Cuidados Críticos , Razão de Chances
3.
Plant Dis ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744710

RESUMO

Lippia (Phyla canescens) is a fast-growing, mat-forming, and prostrate perennial plant well adapted to infertile, high-saline, and drought environments (Leigh, et al. 2004). It arrived in China from Japan as a flowering ground cover in 2001 (Cai, et al. 2004). In June 2022, southern blight appeared in our nursery of the Floriculture Research Institute of Guangdong Academy of Agricultural Sciences. High temperature and damp environment are major factors for this disease. The symptoms of top-layer plants were not easily detected, but they were slightly yellowed. A yellowish-brown water-soak lesion appeared on the stems and lowest leaves exposed to soil. White mycelium appeared in the middle stage. Finally, the surface plants showed water-soak decay, and a mass of beige to black-brown rapeseed-shaped sclerotia appeared on the residue and surrounding soil; these plants died. Sclerotia and mycelia were collected from disease tissue, and after surface sterilization, sclerotia was cultured on potato dextrose agar (PDA) at 28±2°C in an incubator without light. Eight fungal isolates with similar colony morphologies were consistently isolated by purifying from different sampling areas. The isolates exhibited obvious septa and a clamp connection structure within the white mycelium. The average growth rate was 26.86±0.06 mm/day. Numerous white granular sclerotia were produced on the mycelium 6 days later. The sclerotia with a diameter of 1.24±0.07mm (n=189) gradually changed from diage to yellow to brown. A typical strain B1 was selected for further identification, targeting its 18S rRNA and LSU rRNA sequences (Yang, et al. 2011; Xue, et al. 2019). Its 18S rRNA sequence (GenBank Accession No. OR517233, 1626 bp) is 99.63% and 99.57% identical to Athelia rolfsii (AY665774, 1179bp; KC670714, 1775bp; JF819726, 1781bp). Its LSU rRNA sequence (OR539570, 757 bp) is 99.87% identical to Agroathelia rolfsii (OR526537, 904 bp). For Athelia rolfsii, a synonym of Agroathelia rolfsii, by combining the morphological characteristics and molecular identification, the isolate pathogen B1 was confirmed to be Agroathelia rolfsii (the teleomorph of Sclerotium rolfsii). To fullfill Koch's postulates, we inoculated the mycelial plugs to healthy lippia stems and leaves which has grown for one year, with PDA plugs free of mycelium as the control. All the plants were kept in a greenhouse at 28±2°C with a 14-h photoperiod and 80% relative humidity. Each treatment was repeated thrice and vaccinated with 6 points. At 7 d following inoculation, all plants inoculated with B1 showed typical symptoms, but the control group was asymptomatic, and sclerotia appeared 17d after inoculation. Using the same protocol mentioned above, pathogenic fungal was reisolated only from treated groups, but not from the control group. Chose three of the pathogens for 18S rRNA and LSU rRNA sequencing, the results showed 100% identity to B1, the same as its microstructure. There are few reports about the disease on P. canescens. Sosa (2007) investigated the pathogens on P. canescens in Argentina, 16 fungi were found but no A. rolfsii. Sclerotium rolfsii were identified on P. nodiflora or P. lanceolata (Michaux) Greene in America (Farr, et al. 1989). To our knowledge, this is the first report in China. Because this pathogen has wide-ranging hosts and causes serious damage, the results from this study will offer guidance for the prevention and treatment of this disease.

4.
Compr Rev Food Sci Food Saf ; 23(3): e13349, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38638060

RESUMO

3D printing is an additive manufacturing technology that locates constructed models with computer-controlled printing equipment. To achieve high-quality printing, the requirements on rheological properties of raw materials are extremely restrictive. Given the special structure and high modifiability under external physicochemical factors, the rheological properties of proteins can be easily adjusted to suitable properties for 3D printing. Although protein has great potential as a printing material, there are many challenges in the actual printing process. This review summarizes the technical considerations for protein-based ink 3D printing. The physicochemical factors used to enhance the printing adaptability of protein inks are discussed. The post-processing methods for improving the quality of 3D structures are described, and the application and problems of fourth dimension (4D) printing are illustrated. The prospects of 3D printing in protein manufacturing are presented to support its application in food and cultured meat. The native structure and physicochemical factors of proteins are closely related to their rheological properties, which directly link with their adaptability for 3D printing. Printing parameters include extrusion pressure, printing speed, printing temperature, nozzle diameter, filling mode, and density, which significantly affect the precision and stability of the 3D structure. Post-processing can improve the stability and quality of 3D structures. 4D design can enrich the sensory quality of the structure. 3D-printed protein products can meet consumer needs for nutritional or cultured meat alternatives.


Assuntos
Tinta , Impressão Tridimensional , Alimentos , Carne in vitro , Substitutos da Carne
5.
Crit Rev Food Sci Nutr ; : 1-17, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37218684

RESUMO

Condiments (such as sodium chloride and glutamate sodium) cause consumers to ingest too much sodium and may lead to a variety of diseases, thus decreasing their quality of life. Recently, a salt reduction strategy using flavor peptides has been established. However, the development of this strategy has not been well adopted by the food industry. There is an acute need to screen for peptides with salty and umami taste, and to understand their taste characteristic and taste mechanism. This review provides a thorough analysis of the literature on flavor peptides with sodium-reducing ability, involving their preparation, taste characteristic, taste mechanism and applications in the food industry. Flavor peptides come from a wide range of sources and can be sourced abundantly from natural foods. Flavor peptides with salty and umami tastes are mainly composed of umami amino acids. Differences in amino acid sequences, spatial structures and food matrices will cause different tastes in flavor peptides, mostly attributed to the interaction between peptides and taste receptors. In addition to being used in condiments, flavor peptides have also anti-hypertensive, anti-inflammatory and anti-oxidant abilities, offering the potential to be used as functional ingredients, thus making their future in the food industry extremely promising.

6.
J Sci Food Agric ; 103(5): 2502-2511, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36606415

RESUMO

BACKGROUND: Surimi products occupy a large market in the food industry, and the gel performance is an important index to evaluate them. Thus, it is of great significance and practical value to find better food ingredients to regulate the structure and gel performance of surimi products. In this study, we used pea protein (PP) to restructure fish myofibrillar proteins (MPs) to achieve regulation of protein gel performance. RESULTS: PP could enhance MP gel performance in terms of compressive strength, water-holding capacity, and some texture parameters. This may be the result of an increasing ß-sheet content and a decreasing trend in the α-helix content, along with enhancements in hydrophobic interactions, nonspecific associations, and ionic bonds in a mixed PP-MP gel. The compressive strength, texture, and water-holding capacity of MP gel were positively correlated with surface hydrophobicity, active sulfhydryl, turbidity, and ß-sheet of the mixed PP-MP system. CONCLUSION: The findings suggest that PP can regulate the gel performance by remodeling the structure of MP. The regulation and correlation analysis between gel performance, structure, and physicochemical properties were explored and established to provide a theoretical basis for improving the quality of surimi products. This study will broaden the application of PP in the field of food processing and provide theoretical guidance for the manufacture of new surimi products. © 2023 Society of Chemical Industry.


Assuntos
Proteínas de Ervilha , Animais , Géis/química , Temperatura Alta , Proteínas de Peixes/química , Água/química
7.
J Sci Food Agric ; 103(8): 4211-4220, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36647322

RESUMO

BACKGROUND: Apple polyphenols (APs) with multiple biological effects have attracted extensive attention due to their broad opportunities for application. However, the use of APs is hampered by their instability in the face of environmental changes. Designing efficient carriers to improve the bioavailability of APs is the key to solving these problems. In this study, gelatin-chitooligosaccharide nanoparticles produced by the Maillard reaction (GCM) were fabricated to encapsulate AP, and the structure, antioxidant activity, and stability of the GMM-AP nanoparticle system were evaluated. RESULTS: The results of endogenous fluorescence spectrum, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction, and simultaneous thermal analysis confirmed structural changes and interactions between GCM and AP. Combination with GCM did not adversely affect the antioxidant properties of AP, and the GCM-AP nanoparticles possessed superior temperature and storage stability. In comparison with fish gelatin-apple polyphenol nanoparticles, the GCM-AP nanoparticles were more stable at a wider pH range, and were more resistant to the electrostatic shielding effect of NaCl. After simulating gastric digestion, the particle size and polydispersity index (PDI) of GCM-AP nanoparticles were almost unchanged. CONCLUSION: The findings suggest that GCM nanoparticles loaded with AP could be used as good carriers with good antioxidant activity and stability. This study therefore provides a theoretical foundation for the development and industrial application of food functional factors. © 2023 Society of Chemical Industry.


Assuntos
Nanopartículas , Polifenóis , Animais , Polifenóis/química , Antioxidantes , Gelatina/química , Quitina , Nanopartículas/química , Tamanho da Partícula
8.
Environ Microbiol ; 23(11): 7093-7104, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34674400

RESUMO

Exploring the metabolic characteristics of indigenous PAH degraders is critical to understanding the PAH bioremediation mechanism in the natural environment. While stable-isotopic probing (SIP) is a viable method to identify functional microorganisms in complex environments, the metabolic characteristics of uncultured degraders are still elusive. Here, we investigated the naphthalene (NAP) biodegradation of petroleum polluted soils by combining SIP, amplicon sequencing and metagenome binning. Based on the SIP and amplicon sequencing results, an uncultured Gammaproteobacterium sp. was identified as the key NAP degrader. Additionally, the assembled genome of this uncultured degrader was successfully obtained from the 13 C-DNA metagenomes by matching its 16S rRNA gene with the SIP identified OTU sequence. Meanwhile, a number of NAP degrading genes encoding naphthalene/PAH dioxygenases were identified in this genome, further confirming the direct involvement of this indigenous degrader in the NAP degradation. The degrader contained genes related to the metabolisms of several carbon sources, energy substances and vitamins, illuminating potential reasons for why microorganisms cannot be cultivated and finally realize their cultivation. Our findings provide novel information on the mechanisms of in situ PAH biodegradation and add to our current knowledge on the cultivation of non-culturable microorganisms by combining both SIP and metagenome binning.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo
9.
Environ Microbiol ; 23(11): 7042-7055, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34587314

RESUMO

Rhizoremediation is a potential technique for polycyclic aromatic hydrocarbon (PAH) remediation; however, the catabolic pathways of in situ rhizosphere PAH degraders and the main factors driving PAH rhizoremediation remain unclear. To address these issues, stable-isotope-probing coupled with metagenomics and molecular ecological network analyses were first used to investigate the phenanthrene rhizoremediation by three different prairie grasses in this study. All rhizospheres exhibited a significant increase in phenanthrene removal and markedly modified the diversity of phenanthrene degraders by increasing their populations and interactions with other microbes. Of all the active phenanthrene degraders, Marinobacter and Enterobacteriaceae dominated in the bare and switchgrass rhizosphere respectively; Achromobacter was markedly enriched in ryegrass and tall fescue rhizospheres. Metagenomes of 13 C-DNA illustrated several complete pathways of phenanthrene degradation for each rhizosphere, which clearly explained their unique rhizoremediation mechanisms. Additionally, propanoate and inositol phosphate of carbohydrates were identified as the dominant factors that drove PAH rhizoremediation by strengthening the ecological networks of soil microbial communities. This was verified by the results of rhizospheric and non-rhizospheric treatments supplemented with these two substances, further confirming their key roles in PAH removal and in situ PAH rhizoremediation. Our study offers novel insights into the mechanisms of in situ rhizoremediation at PAH-contaminated sites.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Rizosfera , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo
10.
Crit Rev Food Sci Nutr ; 61(20): 3436-3449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32715743

RESUMO

Ice crystal growth during cold storage presents a quality problem in frozen foods. The development of appropriate technical conditions and ingredient formulations is an effective method for frozen food manufacturers to inhibit ice crystals generated during storage and distribution. Ice-binding proteins (IBPs) have great application potential as ice crystal growth inhibitors. The ability of IBPs to retard the growth of ice crystals suggests that IBPs can be used as a natural ice conditioner for a variety of frozen products. In this review, we first discussed the damage caused by ice crystals in frozen foods during freezing and frozen storage. Next, the methods and technologies for production, purification and evaluation of IBPs were summarized. Importantly, the present review focused on the characteristics, structural diversity and mechanisms of IBPs, and the application advances of IBPs in food industry. Finally, the challenges and future perspectives of IBPs are also discussed. This review may provide a better understanding of IBPs and their applications in frozen products, providing some valuable information for further research and application of IBPs.


Assuntos
Proteínas Anticongelantes , Gelo , Proteínas Anticongelantes/metabolismo , Proteínas de Transporte , Congelamento , Alimentos Congelados
11.
Compr Rev Food Sci Food Saf ; 20(1): 542-562, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33443808

RESUMO

Growth of ice crystals can cause serious problems, such as frozen products deterioration, road damage, energy losses, and safety risks of human beings. Antifreeze peptides (AFPs), a healthy and effective cryoprotectant, have great potential as ice crystal growth inhibitors for a variety of frozen products. In this review, methods and technologies for the production, purification, evaluation, and characterization of AFPs are comprehensively summarized. First, this review describes the preparation of AFPs, including the methods of enzymatic hydrolysis, chemical synthesis, and microbial fermentation. Next, this review introduces the major methods by which to evaluate AFPs' antifreeze activity, including nanoliter osmometer, differential scanning calorimetry, splat-cooling, the biovaluation model, and novel technology. Moreover, this review presents an overview of the molecular characteristics, structure-function relationships, and action mechanisms of AFPs. Furthermore, advances in the application of AFPs to frozen food, including frozen dough, meat products, fruits, vegetable products, and dairy, are summarized and holistically analyzed. Finally, challenges of AFPs and future perspectives on their use are also discussed. An understanding of the production, structure-function relationships, mechanisms and applications of AFPs provides inspiration for further research into the use of AFPs in food science and food nutrition applications.


Assuntos
Proteínas Anticongelantes , Crioprotetores , Proteínas Anticongelantes/genética , Cristalização , Congelamento , Humanos , Relação Estrutura-Atividade
12.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053587

RESUMO

To identify and obtain the indigenous degraders metabolizing phenanthrene (PHE) and biphenyl (BP) from the complex microbial community within industrial wastewater, DNA-based stable-isotope probing (DNA-SIP) and cultivation-based methods were applied in the present study. DNA-SIP results showed that two bacterial taxa (Vogesella and Alicyclobacillus) were considered the key biodegraders responsible for PHE biodegradation only, whereas Bacillus and Cupriavidus were involved in BP degradation. Vogesella and Alicyclobacillus have not been linked with PHE degradation previously. Additionally, DNA-SIP helped reveal the taxonomic identity of Ralstonia-like degraders involved in both PHE and BP degradation. To target the separation of functional Ralstonia-like degraders from the wastewater, we modified the traditional cultivation medium and culture conditions. Finally, an indigenous PHE- and BP-degrading strain, Ralstonia pickettii M1, was isolated via a cultivation-dependent method, and its role in PHE and BP degradation was confirmed by enrichment of the 16S rRNA gene and distinctive dioxygenase genes in the DNA-SIP experiment. Our study has successfully established a program for the application of DNA-SIP in the isolation of the active functional degraders from an environment. It also deepens our insight into the diversity of indigenous PHE- and BP-degrading communities.IMPORTANCE The comprehensive treatment of wastewater in industrial parks suffers from the presence of multiple persistent organic pollutants (POPs), such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), which reduce the activity of activated sludge and are difficult to eliminate. Characterizing and applying active bacterial degraders metabolizing multiple POPs therefore helps to reveal the mechanisms of synergistic metabolism and to improve wastewater treatment efficiency in industrial parks. To date, SIP studies have successfully investigated the biodegradation of PAHs or PCBs in real-world habitats. DNA-SIP facilitates the isolation of target microorganisms that pose environmental concerns. Here, an indigenous phenanthrene (PHE)- and biphenyl (BP)-degrading strain in wastewater, Ralstonia pickettii M1, was isolated via a cultivation-dependent method, and its role in PHE and BP degradation was confirmed by DNA-SIP. Our study provides a routine protocol for the application of DNA-SIP in the isolation of the active functional degraders from an environment.


Assuntos
Compostos de Bifenilo/metabolismo , Fenantrenos/metabolismo , Ralstonia/metabolismo , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Resíduos Industriais/análise , Especificidade da Espécie
13.
Anesth Analg ; 128(2): 256-263, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30113398

RESUMO

BACKGROUND: It is currently unknown whether bupivacaine-induced asystole is better resuscitated with lipid emulsion (LE) administered peripherally or centrally, and whether different LE regimens administered peripherally demonstrated similar effects. In this study, we compared the effects of various regimens of lipid administration in a rat model of bupivacaine-induced asystole. METHODS: Forty-five adult male Sprague-Dawley rats were subjected to bupivacaine-induced asystole and randomly divided into 3 lipid regimens groups: (1) 20% LE was administered continuously via the internal jugular vein (CV-infusion group); (2) 20% LE was administered continuously via the tail vein (PV-infusion group); and (3) 20% LE was administered as divided boluses via the tail vein (PV-bolus group). The maximum dose of LE did not exceed 10 mL·kg(-1). External chest compressions were administered until the return of spontaneous circulation (ROSC) or the end of a 40-minute resuscitation period. RESULTS: The survival rate, rate of ROSC, systolic blood pressure, heart rate, heart rate-blood pressure product, and coronary perfusion pressure during 2-40 minutes in the CV-infusion and PV-bolus groups were significantly higher than those in the PV-infusion group (P < .01), and the plasma total bupivacaine concentration and myocardial bupivacaine content were significantly lower (P < .05). Time to heartbeat return and time to ROSC in the CV-infusion and PV-bolus groups were significantly shorter than those in the PV-infusion group (P < .05). CONCLUSIONS: In the rat model of bupivacaine-induced asystole, a divided LE bolus regimen administered peripherally provided a better resuscitation outcome than that of a continuous LE infusion regimen peripherally, and performed in a similar fashion as the continuous LE infusion regimen administered centrally.


Assuntos
Anestésicos Locais/toxicidade , Bupivacaína/toxicidade , Modelos Animais de Doenças , Emulsões Gordurosas Intravenosas/administração & dosagem , Parada Cardíaca/induzido quimicamente , Parada Cardíaca/tratamento farmacológico , Animais , Parada Cardíaca/fisiopatologia , Infusões Intravenosas , Injeções Intravenosas , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
14.
J Sci Food Agric ; 99(2): 536-545, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29931683

RESUMO

BACKGROUND: To reducing the massive marine pollution and resource waste caused by octopus scraps, we developed a novel octopus scraps protein hydrolysate (OSPH), which displays calcium-chelating activity, and we investigated the chelating interaction and calcium bioavailability of OSPH-Ca. RESULTS: The structural properties of amido and carboxy groups indicated that they could be the reaction sites for chelation. The particle radius of OSPH increased by 32.25 nm after the calcium chelated with OSPH, indicating intramolecular and intermolecular folding and aggregating. The enthalpy of OSPH increased by 0.8323 after chelation, showing that bands of OSPH-Ca needed more thermal energy to be destroyed than OSPH. Meanwhile, the chelate showed remarkable stability and absorbability under either acidic or basic conditions, which favored calcium absorption in the gastrointestinal tracts of humans. The calcium intake of OSPH-Ca increased by 41% when compared with that of CaCl2 . In particular, OSPH-Ca could protect calcium ions from precipitation caused by dietary inhibitors tannic acid and phytate, while calcium uptake efficiency remained at 3.35 and 1.68 times higher than that of CaCl2 . CONCLUSION: These findings revealed the feasibility of transforming octopus scraps into a novel functional calcium chelate based on peptides, promoting environmental sustainability. © 2018 Society of Chemical Industry.


Assuntos
Cálcio/química , Quelantes/química , Octopodiformes/química , Peptídeos/química , Animais , Disponibilidade Biológica , Transporte Biológico , Cálcio/metabolismo , Quelantes/metabolismo , Trato Gastrointestinal/metabolismo , Humanos , Modelos Biológicos , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Termodinâmica
15.
Environ Sci Technol ; 52(5): 2934-2944, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29378393

RESUMO

To reveal the mechanisms of autochthonous bioaugmentation (ABA) in wastewater contaminated with polycyclic aromatic hydrocarbons (PAHs), DNA-stable-isotope-probing (SIP) was used in the present study with the addition of an autochthonous microorganism Acinetobacter tandoii LJ-5. We found LJ-5 inoculum produced a significant increase in phenanthrene (PHE) mineralization, but LJ-5 surprisingly did not participate in indigenous PHE degradation from the SIP results. The improvement of PHE biodegradation was not explained by the engagement of LJ-5 but attributed to the remarkably altered diversity of PHE degraders. Of the major PHE degraders present in ambient wastewater ( Rhodoplanes sp., Mycobacterium sp., Xanthomonadaceae sp. and Enterobacteriaceae sp.), only Mycobacterium sp. and Enterobacteriaceae sp. remained functional in the presence of strain LJ-5, but five new taxa Bacillus, Paenibacillus, Ammoniphilus, Sporosarcina, and Hyphomicrobium were favored. Rhodoplanes, Ammoniphilus, Sporosarcina, and Hyphomicrobium were directly linked to, for the first time, indigenous PHE biodegradation. Sequences of functional PAH-RHDα genes from heavy fractions further proved the change in PHE degraders by identifying distinct PAH-ring hydroxylating dioxygenases between ambient degradation and ABA. Our findings indicate a new mechanism of ABA, provide new insights into the diversity of PHE-degrading communities, and suggest ABA as a promising in situ bioremediation strategy for PAH-contaminated wastewater.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , DNA , Isótopos , Microbiologia do Solo , Águas Residuárias
16.
Molecules ; 23(9)2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231516

RESUMO

Plant peptidase inhibitors play essential roles in the defense systems of plants. A trypsin inhibitor (PHTI) with a molecular mass of 20.5 kDa was isolated from the fresh roots of the medicinal herb, Pseudostellaria heterophylla. The purification process involved ammonium sulfate precipitation, gel filtration chromatography on Sephadex G50, and ion-exchange chromatography on DEAE 650M. The PHTI contained 3.7% α-helix, 42.1% ß-sheets, 21.2% ß-turns, and 33% disordered structures, which showed similarity with several Kunitz-type trypsin inhibitors. Inhibition kinetic studies indicated that PHTI was a competitive inhibitor, with a Ki value of 3.01 × 10-9 M, indicating a high affinity to trypsin. The PHTI exhibited considerable stability over a broad range of pH (2⁻10) and temperatures (20⁻70 °C); however, metal ions, including Fe3+, Ba2+, Mn2+, and Al3+, could inactivate PHTI to different degrees. Results of fluorescence spectroscopy and circular dichroism showed that Fe3+ could bind to TI with an association constant of 2.75 × 105 M-1 to form a 1:1 complex, inducing conformation changes and inactivation of PHTI. In addition, PHTI could inhibit the growth of the phytopathogens, Colletotrichum gloeosporioides and Fusarium oxysporum, through disruption of the cell membrane integrity. The present study extended research on Pseudostellaria heterophylla proteins and makes PHTI an exploitable candidate as an antifungal protein for further investigation.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Caryophyllaceae/química , Compostos Fitoquímicos , Extratos Vegetais , Raízes de Plantas/química , Inibidores da Tripsina/química , Inibidores da Tripsina/farmacologia , Sequência de Aminoácidos , Antifúngicos/isolamento & purificação , Cromatografia em Gel , Dicroísmo Circular , Estabilidade Enzimática/efeitos dos fármacos , Fungos/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Testes de Sensibilidade Microbiana , Peso Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Temperatura , Inibidores da Tripsina/isolamento & purificação
17.
BMC Anesthesiol ; 17(1): 128, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28915792

RESUMO

BACKGROUND: The effectiveness of a combination of a lipid emulsion with epinephrine in reversing local anesthetic-induced cardiac arrest has been confirmed. The combination of a lipid emulsion with levosimendan, was shown to be superior to administration of a lipid emulsion alone with regard to successful resuscitation. In this study, we compared the reversal effects of levosimendan, epinephrine, and a combination of the two agents in lipid-based resuscitation in a rat model of bupivacaine-induced cardiac arrest. METHODS: Fifty-four adult male Sprague-Dawley rats were subjected to bupivacaine (15 mg·kg-1) -induced asystole and were then randomly divided into 3 groups. A lipid emulsion was used as the basic treatment, and administration of drug combinations varied in each group as follows: (1) levosimendan combined with epinephrine (LiEL); (2) epinephrine (LiE); and (3) levosimendan (LiL). The resuscitation outcomes were recorded and included the rate of return of spontaneous circulation (ROSC) and survival at 40 min, time to first heartbeat, time to ROSC, and cumulative dose of epinephrine. We calculated the wet-to-dry ratio of the lung, blood gas values at 40 min and bupivacaine concentration of cardiac tissue and plasma. RESULTS: The rates of ROSC in LiEL and LiE groups were higher than LiL group (P < 0.001; LiEL vs LiL, P = 0.001; LiE vs LiL, P = 0.007). The survival rate in LiEL group was higher than LiE group (P = 0.003; LiEL vs LiE, P = 0.008; LiEL vs LiL, P = 0.001). The time to first heart beat in LiEL group was shorter than LiE, LiL groups. (P < 0.001; LiE vs LiEL, P = 0.001; LiL vs LiEL, P < 0.001). The time to ROSC in LiEL group was shorter than LiE, LiL groups (P < 0.001; LiEL vs LiE, P < 0.001; LiEL vs LiL, P < 0.001). The result was similar for the bupivacaine concentration of cardiac tissue and plasma (cardiac tissue: P = 0.002; plasma: P = 0.011). Furthermore, there were significant differences in the blood-gas values at 40 min, wet-to-dry lung weight ratio, and ratio of damaged alveoli among groups. The LiEL group had the best result for all parameters (P < 0.01, P = 0.008, P < 0.001, respectively). Additionally, significantly less epinephrine was used in the LiEL group (P < 0.001). CONCLUSIONS: Levosimendan combined with epinephrine may be superior to either drug alone for lipid-based resuscitation in a rat model of bupivacaine-induced cardiac arrest. The drug combination was associated with a higher survival rate as well as decreased epinephrine consumption and lung damage.


Assuntos
Bupivacaína/toxicidade , Reanimação Cardiopulmonar/métodos , Epinefrina/administração & dosagem , Emulsões Gordurosas Intravenosas/administração & dosagem , Parada Cardíaca/tratamento farmacológico , Hidrazonas/administração & dosagem , Piridazinas/administração & dosagem , Anestésicos Locais/toxicidade , Animais , Antiarrítmicos/administração & dosagem , Quimioterapia Combinada , Parada Cardíaca/induzido quimicamente , Parada Cardíaca/fisiopatologia , Parada Cardíaca Induzida/métodos , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Simendana
18.
Mar Drugs ; 15(4)2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394291

RESUMO

Schizochytrium protein hydrolysate (SPH) was prepared through stepwise enzymatic hydrolysis by alcalase and flavourzyme sequentially. The proportion of hydrophobic amino acids of SPH was 34.71%. The molecular weight (MW) of SPH was principally concentrated at 180-3000 Da (52.29%). SPH was divided into two fractions by ultrafiltration: SPH-I (MW < 3 kDa) and SPH-II (MW > 3 kDa). Besides showing lipid peroxidation inhibitory activity in vitro, SPH-I exhibited high DPPH and ABTS radicals scavenging activities with IC50 of 350 µg/mL and 17.5 µg/mL, respectively. In addition, the antioxidant activity of SPH-I was estimated in vivo using the model of acute alcohol-induced liver injury in mice. For the hepatoprotective effects, oral administration of SPH-I at different concentrations (100, 300 mg/kg BW) to the mice subjected to alcohol significantly decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and hepatic malondialdehyde (MDA) level compared to the untreated mice. Besides, SPH-I could effectively restore the hepatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities and glutathione (GSH) level. Results suggested that SPH was rich in biopeptides that could be exploited as antioxidant molecules against oxidative stress in human body.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fungos/química , Fígado/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Hidrolisados de Proteína/farmacologia , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Tetracloreto de Carbono/farmacologia , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/farmacologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia/métodos , Superóxido Dismutase/metabolismo
19.
Molecules ; 22(4)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28353638

RESUMO

Marine microorganisms have been proposed as a new kind of protein source. Efforts are needed in order to transform the protein-rich biological wastes left after lipid extraction into value-added bio-products. Thus, the utilization of protein recovered from defatted Schizochytrium sp. by-products presents an opportunity. A specific peptide Tyr-Leu (YL) with calcium-binding capacity was purified from defatted Schizochytrium sp. protein hydrolysates through gel filtration chromatography and RP-HPLC. The calcium-binding activity of YL reached 126.34 ± 3.40 µg/mg. The calcium-binding mechanism was investigated through ultraviolet, fluorescence and infrared spectroscopy. The results showed that calcium ions could form dative bonds with carboxyl oxygen atoms and amino nitrogen atoms as well as the nitrogen and oxygen atoms of amide bonds. YL-Ca exhibited excellent thermal stability and solubility, which was beneficial for its absorption and transport in the basic intestinal tract of the human body. Moreover, the cellular uptake of calcium in Caco-2 cells showed that YL-Ca could enhance calcium uptake efficiency and protect calcium ions against precipitation caused by dietary inhibitors such as tannic acid, oxalate, phytate and metal ions. The findings indicate that the by-product of Schizochytrium sp. is a promising source for making peptide-calcium bio-products as algae-based functional supplements for human beings.


Assuntos
Cálcio/metabolismo , Peptídeos/isolamento & purificação , Hidrolisados de Proteína/química , Estramenópilas/metabolismo , Disponibilidade Biológica , Células CACO-2 , Suplementos Nutricionais , Humanos , Peptídeos/metabolismo , Solubilidade
20.
Mar Drugs ; 15(1)2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-28036002

RESUMO

Peptide-calcium can probably be a suitable supplement to improve calcium absorption in the human body. In this study, a specific peptide Phe-Tyr (FY) with calcium-binding capacity was purified from Schizochytrium sp. protein hydrolysates through gel filtration chromatography and reversed phase HPLC. The calcium-binding capacity of FY reached 128.77 ± 2.57 µg/mg. Results of ultraviolet spectroscopy, fluorescence spectroscopy, and infrared spectroscopy showed that carboxyl groups, amino groups, and amido groups were the major chelating sites. FY-Ca exhibited excellent thermal stability and solubility, which were beneficial to be absorbed and transported in the basic intestinal tract of the human body. Moreover, the calcium bioavailability in Caco-2 cells showed that FY-Ca could enhance calcium uptake efficiency by more than three times when compared with CaCl2, and protect calcium ions against dietary inhibitors, such as tannic acid, oxalate, phytate, and Zn2+. Our findings further the progress of algae-based peptide-calcium, suggesting that FY-Ca has the potential to be developed as functionally nutraceutical additives.


Assuntos
Cálcio/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Hidrolisados de Proteína/química , Estramenópilas/química , Disponibilidade Biológica , Transporte Biológico/fisiologia , Células CACO-2 , Linhagem Celular Tumoral , Quelantes/química , Quelantes/farmacologia , Suplementos Nutricionais , Humanos , Íons/metabolismo , Peptídeos/farmacocinética , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA