Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
BMC Musculoskelet Disord ; 24(1): 799, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814309

RESUMO

OBJECTIVE: This study aimed at constructing a network of competing endogenous RNA (ceRNA) in the synovial tissues of rheumatoid arthritis (RA). It seeks to discern potential biomarkers and explore the long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) axes that are intricately linked to the pathophysiological mechanisms underpinning RA, and providing a scientific basis for the pathogenesis and treatment of RA. METHODS: Microarray data pertaining to RA synovial tissue, GSE103578, GSE128813, and GSE83147, were acquired from the Gene Expression Omnibus (GEO) database ( http://www.ncbi.nlm.nih.gov/geo ). Conducted to discern both differentially expressed lncRNAs (DELncRNAs) and differentially expressed genes (DEGs). A ceRNA network was obtained through key lncRNAs, key miRNAs, and key genes. Further investigations involved co-expression analyses to uncover the lncRNA-miRNA-mRNA axes contributing to the pathogenesis of RA. To delineate the immune-relevant facets of this axis, we conducted an assessment of key genes, emphasizing those with the most substantial immunological correlations, employing the GeneCards database. Finally, gene set enrichment analysis (GSEA) was executed on the identified key lncRNAs to elucidate their functional implications in RA. RESULTS: The 2 key lncRNAs, 7 key miRNAs and 6 key genes related to the pathogenesis of RA were obtained, as well as 2 key lncRNA-miRNA-mRNA axes (KRTAP5-AS1-hsa-miR-30b-5p-PNN, XIST-hsa-miR-511-3p/hsa-miR-1277-5p-F2RL1). GSEA of two key lncRNAs obtained biological processes and signaling pathways related to RA synovial lesions. CONCLUSION: The findings of this investigation hold promise in furnishing a foundational framework and guiding future research endeavors aimed at comprehending the etiology and therapeutic interventions for RA.


Assuntos
Artrite Reumatoide , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Artrite Reumatoide/genética
2.
Clin Immunol ; 237: 108964, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35263665

RESUMO

Peroxiredoxin-4 (PRDX4), a member of PRDX family, which played an important role in scavenging reactive oxygen species (ROS). The up-regulation of PRDX4 in synovial tissue and synovial fluid from rheumatoid arthritis (RA) patients has been reported. However, the biological functions of PRDX4 in fibroblast-like synoviocytes (RA-FLS) remains unclear. In this research, we reveal that expression of PRDX4 was notably increased in RA synovial tissue, especially in hyperplastic synovial tissue. PRDX4 silencing significantly inhibited the tumor cell-like behaviors and mRNA expression of matrix metalloproteinases (MMPs) in RA-FLS. Furthermore, overexpression of PRDX4 markedly activated PI3K/Akt signaling pathway, which can be reverted by Akt inhibitor MK-2206. These observations identified elevated PRDX4 may regulates the tumor cell-like biological characteristic of RA-FLS via Pi3k/Akt pathway. Targeting PRDX4 and its downstream signaling pathway might provide a potential diagnostic markers and therapeutic target for RA.


Assuntos
Artrite Reumatoide , Peroxirredoxinas , Sinoviócitos , Artrite Reumatoide/genética , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo
3.
J Proteome Res ; 20(10): 4746-4757, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34496567

RESUMO

Tandem mass tag (TMT)-coupled liquid chromatography coupled with tandem mass spectrometry is a powerful method to investigate synovial tissue protein profiles in patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Protein was isolated from synovial tissue samples of 22 patients and labeled with a TMT kit. Over 500 proteins were identified as the differential expression protein on comparing RA and OA synovial tissue, including 239 upregulated and 271 downregulated proteins. Data are available via ProteomeXchange with identifier PXD027703. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that the majority participated in the developmental processes and protein processing in the endoplasmic reticulum. Olfactomedin 4 (OLFM4), a secreted glycoprotein, in joint inflammation of RA was explored. OLFM4 was upregulated in RA synovial tissue samples. In fibroblast-like synoviocytes (FLS), inflammation cytokines, TNF-α, interleukin (IL)-1ß, and LPS can upregulate OLFM4. After OLFM4 knockdown under TNF-α stimulation, RA FLS proliferation was inhibited and the expression of CXCL9, CXCL11, and MMP-1 was decreased. Overall, the RA synovial tissue protein expression profile by proteomic analysis shows some unique targets in RA pathophysiology, and OLFM4 in FLS plays an important role in RA joint inflammation. OLFM4 can be a promising therapeutic target in RA synovial tissue.


Assuntos
Artrite Reumatoide , Proteômica , Artrite Reumatoide/genética , Proliferação de Células , Células Cultivadas , Fibroblastos , Fator Estimulador de Colônias de Granulócitos , Humanos , Inflamação/genética , Membrana Sinovial
4.
Mol Pain ; 16: 1744806920925425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32484015

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is well documented as an important molecule in pain hypersensitivity following inflammation and nerve injury and in many other cellular biological processes. Here, we show that TRPA1 is expressed not only by sensory neurons of the dorsal root ganglia (DRG) but also in their adjacent satellite glial cells (SGCs), as well as nonmyelinating Schwann cells. TRPA1 immunoreactivity is also detected in various cutaneous structures of sensory neuronal terminals, including small and large caliber cutaneous sensory fibers and endings. The SGC-expressed TRPA1 is functional. Like DRG neurons, dissociated SGCs exhibit a robust response to the TRPA1-selective agonist allyl isothiocyanate (AITC) by an increase of intracellular Ca2+ concentration ([Ca2+]i). These responses are abolished by the TRPA1 antagonist HC030031 and are absent in SGCs and neurons from global TRPA1 null mice. SGCs and neurons harvested from DRG proximal to painful tissue inflammation induced by plantar injection of complete Freund's adjuvant show greater AITC-evoked elevation of [Ca2+]i and slower recovery compared to sham controls. Similar TRPA1 sensitization occurs in both SGCs and neurons during neuropathic pain induced by spared nerve injury. Together, these results show that functional TRPA1 is expressed by sensory ganglia SGCs, and TRPA1 function in SGCs is enhanced after both peripheral inflammation and nerve injury, and suggest that TRPA1 in SGCs may contribute to inflammatory and neuropathic pain.


Assuntos
Inflamação/patologia , Neuralgia/metabolismo , Neuralgia/patologia , Neuroglia/patologia , Células Receptoras Sensoriais/patologia , Canal de Cátion TRPA1/metabolismo , Animais , Tamanho Celular , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Isotiocianatos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Células Receptoras Sensoriais/metabolismo
5.
Mol Pain ; 16: 1744806920963807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33054557

RESUMO

The monosodium iodoacetate knee osteoarthritis model has been widely used for the evaluation of osteoarthritis pain, but the pathogenesis of associated chronic pain is not fully understood. The T-type calcium channel 3.2 (CaV3.2) is abundantly expressed in the primary sensory neurons, in which it regulates neuronal excitability at both the somata and peripheral terminals and facilitates spontaneous neurotransmitter release at the spinal terminals. In this study, we investigated the involvement of primary sensory neuron-CaV3.2 activation in monosodium iodoacetate osteoarthritis pain. Knee joint osteoarthritis pain was induced by intra-articular injection of monosodium iodoacetate (2 mg) in rats, and sensory behavior was evaluated for 35 days. At that time, knee joint structural histology, primary sensory neuron injury, and inflammatory gliosis in lumbar dorsal root ganglia, and spinal dorsal horn were examined. Primary sensory neuron-T-type calcium channel current by patch-clamp recording and CaV3.2 expression by immunohistochemistry and immunoblots were determined. In a subset of animals, pain relief by CaV3.2 inhibition after delivery of CaV3.2 inhibitor TTA-P2 into sciatic nerve was investigated. Knee injection of monosodium iodoacetate resulted in osteoarthritis histopathology, weight-bearing asymmetry, sensory hypersensitivity of the ipsilateral hindpaw, and inflammatory gliosis in the ipsilateral dorsal root ganglia, sciatic nerve, and spinal dorsal horn. Neuronal injury marker ATF-3 was extensively upregulated in primary sensory neurons, suggesting that neuronal damage was beyond merely knee-innervating primary sensory neurons. T-type current in dissociated primary sensory neurons from lumbar dorsal root ganglia of monosodium iodoacetate rats was significantly increased, and CaV3.2 protein levels in the dorsal root ganglia and spinal dorsal horn ipsilateral to monosodium iodoacetate by immunoblots were significantly increased, compared to controls. Perineural application of TTA-P2 into the ipsilateral sciatic nerve alleviated mechanical hypersensitivity and weight-bearing asymmetry in monosodium iodoacetate osteoarthritis rats. Overall, our findings demonstrate an elevated CaV3.2 expression and enhanced function of primary sensory neuron-T channels in the monosodium iodoacetate osteoarthritis pain. Further study is needed to delineate the importance of dysfunctional primary sensory neuron-CaV3.2 in osteoarthritis pain.


Assuntos
Benzamidas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Neuralgia/metabolismo , Osteoartrite do Joelho/metabolismo , Piperidinas/farmacologia , Células Receptoras Sensoriais/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Animais , Escala de Avaliação Comportamental , Benzamidas/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Difosfatos/toxicidade , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Imidazóis/toxicidade , Imuno-Histoquímica , Inflamação/metabolismo , Masculino , Nociceptores/metabolismo , Osteoartrite do Joelho/induzido quimicamente , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/fisiopatologia , Piperidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Regulação para Cima
6.
Clin Immunol ; 221: 108592, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32920213

RESUMO

The efficacy of conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) for rheumatoid arthritis (RA) patients was limited. However, there were no predictive markers for poor csDMARDs outcome. Clinical information of RA patients was collected and the high-mobility group box 1 (HMGB1) polymorphisms (rs4145277, rs2249825, rs1412125 and rs1045411) were examined. Among the 252 patients, 31.0% had no response of csDMARDs. Anti-citrullinated protein antibody (ACPA)-positive, C-reactive protein (CRP) and Disease Activity Score (DAS) 28- erythrocyte sedimentation rate (ESR) were the associated factors, which (DAC:DAS 28 > 4.7 and ACPA-positive and CRP > 7.1 mg/L) was used to predict poor csDMARDs outcome, the sensitivity and specificity was 87.2% and 60.9%, respectively. Among those DAC patients, the refractory RA rate in the rs2249825 GG genotype patients was 83.3%, the specificity was 98.5%. The clinical markers (DAC) and rs2249825 GG genotype can be used to predict poor csDMARDs outcome.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Proteína HMGB1/genética , Adulto , Biomarcadores , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Resultado do Tratamento
7.
Gene Ther ; 26(7-8): 308-323, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31118475

RESUMO

Transmission of pain signals from primary sensory neurons to secondary neurons of the central nervous system is critically dependent on presynaptic voltage-gated calcium channels. Calcium channel-binding domain 3 (CBD3), derived from the collapsin response mediator protein 2 (CRMP2), is a peptide aptamer that is effective in blocking N-type voltage-gated calcium channel (CaV2.2) activity. We previously reported that recombinant adeno-associated virus (AAV)-mediated restricted expression of CBD3 affixed to enhanced green fluorescent protein (EGFP) in primary sensory neurons prevents the development of cutaneous mechanical hypersensitivity in a rat neuropathic pain model. In this study, we tested whether this strategy is effective in treating established pain. We constructed AAV6-EGFP-CBD3A6K (AAV6-CBD3A6K) expressing a fluorescent CBD3A6K (replacing A to K at position 6 of CBD3 peptide), which is an optimized variant of the parental CBD3 peptide that is a more potent blocker of CaV2.2. Delivery of AAV6-CBD3A6K into lumbar (L) 4 and 5 dorsal root ganglia (DRG) of rats 2 weeks following tibial nerve injury (TNI) induced transgene expression in neurons of these DRG and their axonal projections, accompanied by attenuation of pain behavior. We additionally observed that the increased CaV2.2α1b immunoreactivity in the ipsilateral spinal cord dorsal horn and DRG following TNI was significantly normalized by AAV6-CBD3A6K treatment. Finally, the increased neuronal activity in the ipsilateral dorsal horn that developed after TNI was reduced by AAV6-CBD3A6K treatment. Collectively, these results indicate that DRG-restricted AAV6 delivery of CBD3A6K is an effective analgesic molecular strategy for the treatment of established neuropathic pain.


Assuntos
Aptâmeros de Peptídeos/genética , Canais de Cálcio Tipo N/metabolismo , Dependovirus/genética , Terapia Genética/métodos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Neuralgia/terapia , Animais , Aptâmeros de Peptídeos/química , Aptâmeros de Peptídeos/metabolismo , Bloqueadores dos Canais de Cálcio/química , Dependovirus/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Domínios Proteicos , Ratos , Ratos Sprague-Dawley
8.
Mediators Inflamm ; 2019: 6768504, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275058

RESUMO

Dysregulation of multiple microRNAs widely takes place during rheumatoid arthritis (RA) and experimental arthritides. This study is performed to explore the possible mechanism underlying DICER1 deficiency-mediated inflammation in human synoviocytes SW982. Firstly, RNAi of DICER1 led to increased COX2, MMP3, and MMP13 protein production, while DICER1 overexpression could reduce MMP13 expression. Secondly, the increase of IL-8 and decrease of TGF-ß1 and TIMP1 were determined in the supernatant derived from DICER1 siRNA-treated cells, while DICER1 overexpression was found capable to reverse this effect. Ingenuity pathway analysis (IPA) software predicted that the Dicer1 deficiency-induced dysregulated cytokines in synoviocytes could possibly lead to the inflammatory disorders in the synovial tissue. Moreover, DICER1 deficiency could also reduce apoptosis, while DICER1 overexpression was found to decrease the proliferation and enhance apoptosis. In addition, DICER1 deficiency could lower the expression of multiple RA-related miRNAs such as miR-155. Meanwhile, DICER1 overexpression could rescue their low expression levels. And then, gain or loss of miR-155 function could regulate the protein levels of MMP3 and MMP13. These results indicated that DICER1 might play its role through regulating its downstream RA-related miRNAs. Our data demonstrated that DICER1 deficiency could cause multiple proinflammatory events in human synoviocytes SW982. This mechanism study might provide the possible target molecule to modify the inflammatory destruction and overproliferation in synoviocytes.


Assuntos
RNA Helicases DEAD-box/metabolismo , Inflamação/metabolismo , Ribonuclease III/metabolismo , Sinoviócitos/metabolismo , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Linhagem Celular , Proliferação de Células/genética , Proliferação de Células/fisiologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Inflamação/genética , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Interferência de RNA , Ribonuclease III/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
9.
Clin Orthop Relat Res ; 477(12): 2785-2797, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31764352

RESUMO

BACKGROUND: Osteoarthritis (OA) is characterized by degeneration of articular cartilage. Studies have found that enhancement of autophagy, an intracellular catabolic process, may limit the pathologic progression of OA. Chloramphenicol is a potent activator of autophagy; however, the effects of chloramphenicol on articular cartilage are unknown. QUESTIONS/PURPOSES: Using human OA knee chondrocytes in vitro, we asked, does chloramphenicol (1) activate autophagy in chondrocytes; (2) protect chondrocytes from IL-1ß-induced apoptosis; and (3) reduce the expression of matrix metallopeptidase (MMP)-13 and IL-6 (markers associated with articular cartilage degradation and joint inflammation). Using an in vivo rabbit model of OA, we asked, does an intra-articular injection of chloramphenicol in the knee (4) induce autophagy; (5) reduce OA severity; and (6) reduce MMP-13 expression? METHODS: Human chondrocytes were extracted from 10 men with OA undergoing TKA. After treatment with 25 µg/mL, 50 µg/mL, or 100µg/mL chloramphenicol, the autophagy of chondrocytes was detected with Western blotting, transmission electron microscopy, or an autophagy detection kit. There were four groups in our study: one group was untreated, one was treated with 100 µg/mL chloramphenicol, another was treated with 10 ng/mL of IL-1ß, and the final group was treated with 10 ng/mL of IL-1ß and 100 µg/mL of chloramphenicol. All groups were treated for 48 hours; cell apoptosis was detected with Western blotting and flow cytometry. Inflammation marker IL-6 in the cell culture supernatant was detected with an ELISA. Articular cartilage degradation-related enzyme MMP-13 was analyzed with Western blotting. A rabbit model of OA was induced by intra-articular injection of type II collagenase in 20 male 3-month-old New Zealand White rabbits' right hind leg knees; the left hind leg knees served as controls. Rabbits were treated by intra-articular injection of saline or chloramphenicol once a week for 8 weeks. Autophagy of the articular cartilage was detected with Western blotting and transmission electron microscopy. Degeneration of articular cartilage was analyzed with Safranin O-fast green staining and the semi-quantitative index Osteoarthritis Research Society International (OARSI) grading system. Degeneration of articular cartilage was evaluated using the OARSI grading system. The expression of MMP-13 in articular cartilage was detected with immunohistochemistry. RESULTS: Chloramphenicol activated autophagy in vitro in the chondrocytes of humans with OA and in an in vivo rabbit model of OA. Chloramphenicol inhibited IL-1-induced apoptosis (flow cytometry results with chloramphenicol, 25.33 ± 3.51%, and without chloramphenicol, 44.00 ± 3.61%, mean difference, 18.67% [95% CI 10.60 to 26.73]; p = 0.003) and the production of proinflammatory cytokine IL-6 (ELISA results, with chloramphenicol, 720.00 ± 96.44 pg/mL, without chloramphenicol, 966.67 ± 85.05 pg/mL; mean difference 74.24 pg/mL [95% CI 39.28 to 454.06]; p = 0.029) in chondrocytes. After chloramphenicol treatment, the severity of cartilage degradation was reduced in the treatment group (OARSI 6.80 ± 2.71) compared with the control group (12.30 ± 2.77), (mean difference 5.50 [95% CI 1.50 to 9.50]; p = 0.013). Furthermore, chloramphenicol treatment also decreased the production of MMP-13 in vitro and in vivo. CONCLUSIONS: Chloramphenicol reduced the severity of cartilage degradation in a type II collagen-induced rabbit model of OA, which may be related to induction of autophagy and inhibition of MMP-13 and IL-6. CLINICAL RELEVANCE: Our study suggests that an intra-articular injection of chloramphenicol may reduce degeneration of articular cartilage and that induction of autophagy may be a method for treating OA. The animal model we used was type II collagen-induced OA, which was different from idiopathic OA and post-traumatic OA. Therefore, we need to use other types of OA models (idiopathic OA or a surgically induced OA model) to further verify its effect, and the side effects of chloramphenicol also need to be considered, such as myelosuppression.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Cloranfenicol/administração & dosagem , Condrócitos/patologia , Osteoartrite do Joelho/tratamento farmacológico , Idoso , Animais , Antibacterianos/administração & dosagem , Apoptose/efeitos dos fármacos , Cartilagem Articular/patologia , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Injeções Intra-Articulares , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/patologia , Coelhos
10.
J Cell Mol Med ; 22(1): 241-250, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28782180

RESUMO

MicroRNAs are considered to play critical roles in the pathogenesis of human inflammatory arthritis, including rheumatoid arthritis (RA). The purpose of this study was to determine the relationship between miR-10a-5p and TBX5 in synoviocytes and evaluate their contribution to joint inflammation. The expression of miR-10a-5p and TBX5 in the synovium of RA and human synovial sarcoma cell line SW982 stimulated by IL-1ß was determined by RT-qPCR and Western blotting. The direct interaction between miR-10a-5p and TBX5 3'UTR was determined by dual-luciferase reporter assay in HeLa cells. Mimics and inhibitors of miR-10a-5p were transfected into SW982 cells. TBX5 was overexpressed by plasmid transfection or knocked down by RNAi. Proinflammatory cytokines and TLR3 and MMP13 expressions were determined by RT-qPCR and Western blotting. Down-regulated expression of miR-10a-5p and up-regulation of TBX5 in human patients with RA were found compared to patients with OA. IL-1ß could reduce miR-10a-5p and increase TBX5 expression in SW982 cells in vitro. The direct target relationship between miR-10a-5p and 3'UTR of TBX5 was confirmed by luciferase reporter assay. Alterations of miR-10-5p after transfection with its mimic and inhibitor caused the related depression and re-expression of TBX5 and inflammatory factors in SW982 cells. Overexpression of TBX5 after pCMV3-TBX5 plasmid transfection significantly promoted the production of TLR3, MMP13 and various inflammatory cytokines, while this effect was rescued after knocking down of TBX5 with its specific siRNA. We conclude that miR-10a-5p in a relation with TBX5 regulates joint inflammation in arthritis, which would serve as a diagnostic and therapeutic target for RA treatment.


Assuntos
Regulação para Baixo/genética , Inflamação/genética , Inflamação/patologia , Articulações/patologia , MicroRNAs/genética , Sinoviócitos/metabolismo , Proteínas com Domínio T/metabolismo , Adulto , Idoso , Artrite Reumatoide/patologia , Sequência de Bases , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Membrana Sinovial/patologia , Sinoviócitos/patologia , Proteínas com Domínio T/genética , Regulação para Cima/genética
11.
BMC Musculoskelet Disord ; 18(1): 555, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29284457

RESUMO

BACKGROUND: Studies have investigated the correlation between tumor necrosis factor related apoptosis-inducing ligand (TRAIL) gene polymorphisms and the susceptibility and severity of intervertebral disc degeneration (IDD), but the results were inconsistent. To evaluate the specific relationship, we performed a meta-analysis to clarify the controversies. METHODS: Four databases were searched, and the pooled results were presented as odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS: Three case-control studies from Han Chinese were included (565 cases and 427 controls). All the included studies reported TRAIL 1595C/T gene polymorphisms. The recessive model (CC vs. CT + TT) was the optimal model, which demonstrated a significant relationship between 1595C/T polymorphisms and increased IDD risk (OR = 2.18, 1.45 to 3.27, P = 0.000). No significant heterogeneity was found in the recessive model (I2 = 48.6%, P = 0.143). Patients with lower grade IDD had more genotypes or alleles including 1595TT genotype (grade II vs. grade III: OR = 2.12, 1.18 to 3.83, P = 0.012; grade III vs. grade IV: OR = 2.59, 1.29 to 5.22, P = 0.007) and 1595 T allele (grade II vs. grade III: OR = 1.91, 1.43 to 2.55, P = 0.000; grade II vs. grade IV: OR = 2.46, 0.94 to 1.76, P = 0.000). CONCLUSIONS: There is a significant relationship between 1595C/T polymorphisms and the susceptibility and severity of IDD in Han Chinese. Patients with lower grade IDD had higher frequency of the 1595TT genotype and 1595 T allele.


Assuntos
Povo Asiático/genética , Predisposição Genética para Doença/genética , Degeneração do Disco Intervertebral/genética , Polimorfismo de Nucleotídeo Único/genética , Índice de Gravidade de Doença , Ligante Indutor de Apoptose Relacionado a TNF/genética , Estudos de Casos e Controles , Predisposição Genética para Doença/epidemiologia , Humanos , Degeneração do Disco Intervertebral/diagnóstico , Degeneração do Disco Intervertebral/epidemiologia , Estatística como Assunto/métodos
12.
Mol Cell Biochem ; 420(1-2): 161-70, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27522665

RESUMO

High-mobility group box 1 (HMGB1) is associated with the development of rheumatoid arthritis (RA). Recent studies have shown that methotrexate (MTX) may inhibit the expression of HMGB1. This study examined whether HMGB1 might be involved in the treatment of RA using MTX. Synovial tissues were collected from RA patients who were treated with MTX for at least 6 months (RA-MTX group, 7 cases) and from those without MTX treatment (RA-noMTX group, 7 cases). Additionally, patients with osteoarthritis (OA group, 7 cases) were used as controls. The expression and locations of HMGB1 in the tissues were detected using real-time PCR, western blot, and immunohistochemistry. Additionally, OA-fibroblast-like synoviocytes (FLSs) and RA-FLSs were isolated and cultured, and the expression of HMGB1 was reduced in these cells by transfection with HMGB1 siRNA. Cell proliferation, migration, and invasion abilities were detected. Furthermore, the effects of HMGB1 on matrix metalloproteinase (MMP)-2 and MMP-13 were measured using western blot analysis. At the tissue level, HMGB1 expression in synovial membrane did not differ significantly between the OA and RA-MTX groups, but was significantly lower in these groups than in the RA-noMTX group. In cell experiments, the cell doubling time in the RA-FLS HMGB1 siRNA group was significantly extended compared with that in the RA-FLS negative control (NC)-siRNA group. The amount of cell migration and invasion in the RA-FLS HMGB1 siRNA group was significantly lower compared with that in the NC-siRNA group; the MMP-2 and MMP-13 expression levels were also lower. These results showed that MTX reduced HMGB1 expression in RA synovial tissues, and through the downregulation of HMGB1 expression in tissues, MTX may slow disease progression of RA.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/metabolismo , Proteína HMGB1/biossíntese , Metotrexato/farmacologia , Membrana Sinovial/metabolismo , Idoso , Artrite Reumatoide/patologia , Feminino , Fibroblastos/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Membrana Sinovial/patologia
13.
J Affect Disord ; 349: 69-76, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199390

RESUMO

BACKGROUND: Our previous study found dementia as a significant risk factor for delirium development in elderly patients with hip fracture. However, the causal relationship between dementia and delirium remains unclear. METHODS: To assess the causal relationship between delirium and dementia, we conducted a bidirectional Mendelian randomization (MR) analysis. Inversevariance weighted (IVW), weighted median, MR Egger, weighted mode, and simple mode were employed to conduct the MR analysis. Heterogeneity was assessed using the Cochran Q statistic in MR-Egger and IVW methods. Horizontal pleiotropy was examined via the MR pleiotropy residual sum and outliers (MR-PRESSO) and MR-Egger intercept tests. RESULTS: The forward MR analysis revealed a significant association between unclassified dementia (1.604 (1.326-1.941), p = 1.12 × 10-6), Alzheimer's disease (1.259 (1.128-1.405), p = 4.10 × 10-5), and dementia with Lewy bodies (1.121 (1.026-1.225), p = 0.011) with an increased risk of delirium. In the reverse MR analysis, delirium was also suggested to increase the risk of unclassified dementia (1.133 (1.066-1.204), p = 6.31 × 10-5) and vascular dementia (1.246 (1.075-1.444), p = 0.003). These significant results were further validated in the multivariable MR analysis. No evidence of heterogeneity or horizontal pleiotropy was observed (p > 0.05). LIMITATIONS: (1) Limited to European populations. (2) Sample population overlap between delirium and dementia. (3) Not all dementia subtypes were causally associated with delirium. CONCLUSIONS: This study provides genetic evidence supporting a causal relationship between dementia and delirium, indicating that dementia may influence the risk of delirium while delirium may also increase the risk of dementia.


Assuntos
Doença de Alzheimer , Delírio , Idoso , Humanos , Análise da Randomização Mendeliana , Causalidade , Fatores de Risco , Delírio/epidemiologia , Delírio/genética , Estudo de Associação Genômica Ampla
14.
ACS Biomater Sci Eng ; 10(5): 3355-3377, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38563817

RESUMO

An imbalance between M1 and M2 macrophage polarization is critical in osteoarthritis (OA) development. We investigated the effect of M2 macrophage-derived extracellular vesicles (M2-EVs) to reprogramme macrophages from the M1 to M2 phenotype for OA treatment. M1 macrophages and mouse OA models were treated with M2-EVs. Proteomic analysis was performed to evaluate macrophage polarization in vitro. The OA models were as follows: destabilization of the medial meniscus (DMM) surgery-induced OA and collagenase-induced OA (CIOA). Hyaluronic acid (HA) was used to deliver M2-EVs. M2-EVs decreased macrophage accumulation, repolarized macrophages from the M1 to M2 phenotype, mitigated synovitis, reduced cartilage degradation, alleviated subchondral bone damage, and improved gait abnormalities in the CIOA and DMM models. Moreover, HA increased the retention time of M2-EVs and enhanced the efficiency of M2-EVs in OA treatment. Furthermore, proteomic analysis demonstrated that M2-EVs exhibited a macrophage reprogramming ability similar to IL-4, and the pathways might be the NOD-like receptor (NLR), TNF, NF-κB, and Toll-like receptor (TLR) signaling pathways. M2-EVs reprogrammed macrophages from the M1 to M2 phenotype, which resulted in beneficial effects on cartilage and attenuation of OA severity. In summary, our study indicated that M2-EV-guided reprogramming of macrophages is a promising treatment strategy for OA.


Assuntos
Vesículas Extracelulares , Ácido Hialurônico , Macrófagos , Osteoartrite , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Ácido Hialurônico/química , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/transplante , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças , Células RAW 264.7 , Proteômica , Ativação de Macrófagos/efeitos dos fármacos
15.
Life Sci ; 351: 122780, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866217

RESUMO

AIMS: This study aimed to identify hub ferroptosis-related genes (FRGs) and investigate potential therapy for RA based on FRGs. MAIN METHODS: The differentially expressed FRGs in synovial tissue of RA patients were obtained from the dataset GSE12021 (GPL96). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted to investigate the potential signaling pathways associated with FRGs. Hub genes were identified through topological analysis. The expression levels of these hub genes as well as their diagnostic accuracies were further evaluated. Connectivity Map (CMap) database was utilized to analyze the top 10 FRGs-guided potential drugs for RA. In vitro and in vivo experiments were carried out for further validation. KEY FINDINGS: 2 hub genes among 58 FRGs were identified (EGR1 and CDKN1A), and both were down regulated in RA synovial tissue. GPx4 expression was also decreased in the RA synovial tissue. The natural compound withaferin-a exhibited the highest negative CMap score. In-vitro and in-vivo experiments demonstrated anti-arthritic effects of withaferin-a. SIGNIFICANCE: Ferroptosis participates in pathogenesis of RA, ferroptosis-related genes EGR1 and CDKN1A can be used as diagnostic and therapeutic targets for RA. Withaferin-a can be used as potential anti-arthritic treatment.


Assuntos
Artrite Reumatoide , Ferroptose , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Humanos , Animais , Camundongos , Membrana Sinovial/metabolismo , Membrana Sinovial/efeitos dos fármacos , Masculino
16.
Redox Biol ; 72: 103132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547647

RESUMO

Autoimmune diseases, such as rheumatoid arthritis (RA) and systemic lupus erythematous, are regulated by polymorphisms in genes contributing to the NOX2 complex. Mutations in both Ncf1 and Ncf4 affect development of arthritis in experimental models of RA, but the different regulatory pathways mediated by NOX2-derived reactive oxygen species (ROS) have not yet been clarified. Here we address the possibility that intracellular ROS, regulated by the NCF4 protein (earlier often denoted p40phox) which interacts with endosomal membranes, could play an important role in the oxidation of cysteine peptides in mononuclear phagocytic cells, thereby regulating antigen presentation and activation of arthritogenic T cells. To study the role of NCF4 we used mice with an amino acid replacing mutation (NCF4R58A), which is known to affect interaction with endosomal membranes, leading to decreased intracellular ROS production. To study the impact of NCF4 on T cell activation, we used the glucose phosphate isomerase peptide GPI325-339, which contains two cysteine residues (325-339c-c). Macrophages from mice with the NCF458A mutation efficiently presented the peptide when the two cysteines were intact and not crosslinked, leading to a strong arthritogenic T cell response. T cell priming occurred in the draining lymph nodes (LNs) within 8 days after immunization. Clodronate treatment, which depletes antigen-presenting mononuclear phagocytes, ameliorated arthritis severity, whereas treatment with FYT720, which traps activated T cells in LNs, prohibited arthritis. We conclude that NCF4-dependent intracellular ROS maintains cysteine peptides in an oxidized crosslinked state, which prevents presentation of peptides recognized by non-tolerized T cells and thereby protects against autoimmune arthritis.


Assuntos
Apresentação de Antígeno , Cisteína , Ativação Linfocitária , Oxirredução , Espécies Reativas de Oxigênio , Linfócitos T , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Cisteína/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Apresentação de Antígeno/imunologia , Ativação Linfocitária/imunologia , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Peptídeos/farmacologia , Peptídeos/imunologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Macrófagos/imunologia , Macrófagos/metabolismo
17.
Heliyon ; 9(11): e21503, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027935

RESUMO

Objective: To study pyroptosis-related biomarkers that are associated with the prognosis and immune microenvironment characteristics of osteosarcoma (OS). The goal is to establish a foundation for the prognosis and treatment of OS. Methods: We retrieved transcriptome and clinical data from The Cancer Genome Atlas (TCGA) database for 88 OS patients. Using this data, we constructed a prognostic model to identify pyroptosis-related genes (PRGs) associated with OS prognosis. To further explore the biological function of these PRGs, we performed enrichment analysis. To identify pyroptosis-related long non-coding RNAs (PRLncs) associated with the prognosis of OS, we performed co-expression analysis. Subsequently, a risk prognostic model was constructed using these PRLncs to generate a risk score, termed as PRLncs-score, thereby obtaining PRLncs associated with the prognosis of OS. The accuracy of the prognostic model was verified through survival analysis, risk curve, independent prognostic analysis, receiver operating characteristic (ROC) curve, difference analysis between high- and low-risk groups, and clinical correlation analysis. And to determine whether PRLncs-score is independent prognostic factor for OS. In addition, we further conducted external and internal validation for the risk prognosis model. Further analyses of immune cell infiltration and tumor microenvironment were performed. A pyroptosis-related competitive endogenous RNA (PRceRNA) network was constructed to obtain PRceRNAs associated with the prognosis of OS and performed gene set enrichment analysis (GSEA) on PRceRNA genes. Results: We obtained five PRGs (CHMP4C, BAK1, GSDMA, CASP1, and CASP6) that predicted OS prognosis and seven PRLncs (AC090559.1, AP003119.2, CARD8-AS1, AL390728.4, SATB2-AS1, AL133215.2, and AC009495.3) and one PRceRNA (CARD8-AS1-hsa-miR-21-5p-IL1B) that predicted OS prognosis and indicated characteristics of the OS immune microenvironment. The PRLncs-score, in combination with other clinical features, was established as an independent prognostic factor for OS patients. Subsequent scrutiny of the tumor microenvironment and immune infiltration indicated that patients with low-PRLncs-scores were associated with reduced metastatic risk, improved survival rates, heightened levels of immune cells and stroma, and increased immune activity compared to those with high-PRLncs-scores. Conclusion: The study's findings offer insight into the prognosis of OS and its immune microenvironment, and hold promise for improving early diagnosis and immunotherapy.

18.
J Orthop Surg Res ; 18(1): 787, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858131

RESUMO

OBJECTIVE: To investigate the ferroptosis-related long non-coding RNAs (FRLncs) implicated in influencing the prognostic and immune microenvironment in osteosarcoma (OS), and to establish a foundational framework for informing clinical decision making pertaining to OS management. METHODS: Transcriptome data and clinical data pertaining to 86 cases of OS, the GSE19276, GSE16088 and GSE33382 datasets, and a list of ferroptosis-related genes (FRGs) were used to establish a risk prognostic model through comprehensive analysis. The identification of OS-related differentially expressed FRGs was achieved through an integrated analysis encompassing the aforementioned 86 OS transcriptome data and the GSE19276, GSE16088 and GSE33382 datasets. Concurrently, OS-related FRLncs were ascertained via co-expression analysis. To establish a risk prognostic model for OS, Univariate Cox regression analysis and Lasso Cox regression analysis were employed. Subsequently, a comprehensive evaluation was conducted, comprising risk curve analysis, survival analysis, receiver operating characteristic curve analysis and independent prognosis analysis. Model validation with distinct clinical subgroups was performed to assess the applicability of the risk prognostic model to diverse patient categories. Moreover, single sample gene set enrichment analysis (ssGSEA) was conducted to investigate variations in immune cell populations and immune functions within the context of the risk prognostic model. Furthermore, an analysis of immune checkpoint differentials yielded insights into immune checkpoint-related genes linked to OS prognosis. Finally, the risk prognosis model was verified by dividing the samples into train group and test group. RESULTS: We identified a set of seven FRLncs that exhibit potential as prognostic markers and influence factors of the immune microenvironment in the context of OS. This ensemble encompasses three high-risk FRLncs, denoted as APTR, AC105914.2 and AL139246.5, alongside four low-risk FRLncs, designated as DSCR8, LOH12CR2, AC027307.2 and AC025048.2. Furthermore, our analysis revealed notable down-regulation in the high-risk group across four distinct immune cell types, namely neutrophils, natural killer cells, plasmacytoid dendritic cells and tumor-infiltrating lymphocytes. This down-regulation was also reflected in four key immune functions, antigen-presenting cell (APC)-co-stimulation, checkpoint, cytolytic activity and T cell co-inhibition. Additionally, we identified seven immune checkpoint-associated genes with significant implications for OS prognosis, including CD200R1, HAVCR2, LGALS9, CD27, LAIR1, LAG3 and TNFSF4. CONCLUSION: The findings of this study have identified FRLncs capable of influencing OS prognosis and immune microenvironment, as well as immune checkpoint-related genes that are linked to OS prognosis. These discoveries establish a substantive foundation for further investigations into OS survival and offer valuable insights for informing clinical decision making in this context.


Assuntos
Neoplasias Ósseas , Ferroptose , Osteossarcoma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Ferroptose/genética , Osteossarcoma/genética , Prognóstico , Neoplasias Ósseas/genética , Microambiente Tumoral/genética , Ligante OX40
19.
J Inflamm Res ; 16: 5001-5025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37933335

RESUMO

Purpose: The goal of this study was to explore the expression characteristics of RNA modification-related genes, reveal immune landscapes and identify novel potential diagnostic biomarkers in osteoarthritis (OA) and rheumatoid arthritis (RA) patients. Patients and Methods: RNA microarray and single-cell sequencing (scRNA-seq) data were downloaded from gene expression omnibus (GEO) database. Differentially expressed RNA modification-related genes were identified and then functionally annotated. Univariate logistic regression and lasso regression analysis were used to identify primary disease genes for OA and RA. Validation was done using scRNA-seq analysis and immunohistochemistry (IHC) in human knee synovial tissues and a murine destabilization of the medial meniscus (DMM) model. Through WGCNA analysis, genes associated with cell pyroptosis or autophagy in OA and RA were identified, which were then combined with differentially expressed RNA modification-related genes to construct a PPI interaction network. Furthermore, hub genes were selected for ceRNA interaction network analysis, correlation analysis with OA and RA molecular subtypes, as well as correlation analysis with 22 immune cells. Results: Six RNA modification-related genes (ADAMDEC1, IGHM, OGN, TNFRSF11B, SCARA3 and PTN) were identified as potential OA and RA pathogenesis biomarkers. Their expression was validated in human knee synovial tissues and a murine DMM model. Functional enrichment of differentially expressed RNA modification-related genes between RA and OA was analyzed using GO, KEGG, GSEA, and GSVA. Based on WGCNA and PPI analysis, the six hub genes related to pyroptosis and RNA modification (CXCL10, CXCL9, CCR7, CCL5, CXCL1, and CCR2) were identified as central nodes for ceRNA interaction, correlation with OA and RA molecular subtypes, and association with 22 immune cells. Conclusion: Our research revealed the significance of RNA modification-related genes in the development of OA and RA pathogenesis, thereby providing a novel research direction for understanding the mechanisms, diagnosis, and treatment of OA and RA.

20.
Bio Protoc ; 13(18): e4823, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37753465

RESUMO

The transfection of microRNA (miRNA) mimics and inhibitors can lead to the gain and loss of intracellular miRNA function, helping us better understand the role of miRNA during gene expression regulation under specific physical conditions. Our previous research has confirmed the efficiency and convenience of using liposomes to transfect miRNA mimics or inhibitors. This work uses miR-424 as an example, to provide a detailed introduction for the transfection process of miRNA mimics and inhibitors in the regular SW982 cell line and primary rheumatoid arthritis synovial fibroblasts (RASF) cells from patients by using lipofection, which can also serve as a reference to miRNA transfection in other cell lines. Key features • MiRNA mimics and inhibitors transfection in regular SW982 cell line and primary RASF cells. • Treatment and culture of RASF primary cells before transfection. • Using liposomes for transfection purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA