Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(33)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385327

RESUMO

Dirac fermions play a central role in the study of topological phases, for they can generate a variety of exotic states, such as Weyl semimetals and topological insulators. The control and manipulation of Dirac fermions constitute a fundamental step toward the realization of novel concepts of electronic devices and quantum computation. By means of Angle-Resolved Photo-Emission Spectroscopy (ARPES) experiments and ab initio simulations, here, we show that Dirac states can be effectively tuned by doping a transition metal sulfide, [Formula: see text], through Co/Ni substitution. The symmetry and chemical characteristics of this material, combined with the modification of the charge-transfer gap of [Formula: see text] across its phase diagram, lead to the formation of Dirac lines, whose position in k-space can be displaced along the [Formula: see text] symmetry direction and their form reshaped. Not only does the doping x tailor the location and shape of the Dirac bands, but it also controls the metal-insulator transition in the same compound, making [Formula: see text] a model system to functionalize Dirac materials by varying the strength of electron correlations.

2.
Nano Lett ; 23(5): 1830-1835, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36651800

RESUMO

In the Dirac semimetal BaNiS2, the Dirac nodes are located along the Γ-M symmetry line of the Brillouin zone, instead of being pinned at fixed high-symmetry points. We take advantage of this peculiar feature to demonstrate the possibility of moving the Dirac bands along the Γ-M symmetry line in reciprocal space by varying the concentration of K atoms adsorbed onto the surface of cleaved BaNiS2 single crystals. By means of first-principles calculations, we give a full account of this observation by considering the effect of the electrons donated by the K atom on the charge transfer gap, which establishes a promising tool for engineering Dirac states at surfaces, interfaces, and heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA