Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(10): e0264101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36302034

RESUMO

Low-intensity focused ultrasound (LIFU) is an increasingly applied method for achieving non-invasive brain stimulation. However, transmission of ultrasound through the human skull can substantially affect focal point characteristics of LIFU, including dramatic attenuation in intensity and refraction of focal point location. These effects depend on a high-dimensional parameter space, making these effects difficult to estimate from previous work. Instead, focal point properties of LIFU experiments are often estimated using numerical simulation of LIFU sonication through skull. However, this procedure presents many entry barriers to even computationally savvy investigators and often requires expensive computational hardware, impeding LIFU research. We present a novel MATLAB toolbox (data: doi:10.5068/D1QD60; Matlab Scripts: https://doi.org/10.5281/zenodo.5811122) for rapidly estimating beam properties of LIFU transmitted through bone. Users provide specific values for frequency of LIFU, bone thickness, angle at which LIFU is applied, depth of the LIFU focal point, and diameter of the transducer used and receive an estimation of the degree of refraction/attenuation expected for the given parameters.


Assuntos
Crânio , Transdutores , Humanos , Ultrassonografia/métodos , Crânio/diagnóstico por imagem , Sonicação , Cabeça
2.
Sci Rep ; 11(1): 6100, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731821

RESUMO

Deep brain nuclei are integral components of large-scale circuits mediating important cognitive and sensorimotor functions. However, because they fall outside the domain of conventional non-invasive neuromodulatory techniques, their study has been primarily based on neuropsychological models, limiting the ability to fully characterize their role and to develop interventions in cases where they are damaged. To address this gap, we used the emerging technology of non-invasive low-intensity focused ultrasound (LIFU) to directly modulate left lateralized basal ganglia structures in healthy volunteers. During sonication, we observed local and distal decreases in blood oxygenation level dependent (BOLD) signal in the targeted left globus pallidus (GP) and in large-scale cortical networks. We also observed a generalized decrease in relative perfusion throughout the cerebrum following sonication. These results show, for the first time using functional MRI data, the ability to modulate deep-brain nuclei using LIFU while measuring its local and global consequences, opening the door for future applications of subcortical LIFU.


Assuntos
Globo Pálido , Imageamento por Ressonância Magnética , Terapia por Ultrassom , Adolescente , Adulto , Feminino , Globo Pálido/irrigação sanguínea , Globo Pálido/diagnóstico por imagem , Humanos , Masculino
3.
Curr Biol ; 26(3): 351-5, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26776732

RESUMO

A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat.


Assuntos
Memória de Curto Prazo , Odorantes/análise , Ratos/fisiologia , Olfato , Memória Espacial , Animais , Masculino , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA