Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(21): 11706-11716, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37850645

RESUMO

The evolutionarily conserved DNA repair complex Ku serves as the primary sensor of free DNA ends in eukaryotic cells. Its rapid association with DNA ends is crucial for several cellular processes, including non-homologous end joining (NHEJ) DNA repair and telomere protection. In this study, we conducted a transient kinetic analysis to investigate the impact of the SAP domain on individual phases of the Ku-DNA interaction. Specifically, we examined the initial binding, the subsequent docking of Ku onto DNA, and sliding of Ku along DNA. Our findings revealed that the C-terminal SAP domain of Ku70 facilitates the initial phases of the Ku-DNA interaction but does not affect the sliding process. This suggests that the SAP domain may either establish the first interactions with DNA, or stabilize these initial interactions during loading. To assess the biological role of the SAP domain, we generated Arabidopsis plants expressing Ku lacking the SAP domain. Intriguingly, despite the decreased efficiency of the ΔSAP Ku complex in loading onto DNA, the mutant plants exhibited full proficiency in classical NHEJ and telomere maintenance. This indicates that the speed with which Ku loads onto telomeres or DNA double-strand breaks is not the decisive factor in stabilizing these DNA structures.


Assuntos
Reparo do DNA , Autoantígeno Ku , DNA/genética , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Cinética , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo
2.
Plant Direct ; 7(3): e477, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36891158

RESUMO

Meiosis is a specialized cell division that halves the number of chromosomes in two consecutive rounds of chromosome segregation. In angiosperm plants is meiosis followed by mitotic divisions to form rudimentary haploid gametophytes. In Arabidopsis, termination of meiosis and transition to gametophytic development are governed by TDM1 and SMG7 that mediate inhibition of translation. Mutants deficient in this mechanism do not form tetrads but instead undergo multiple cycles of aberrant nuclear divisions that are likely caused by the failure to downregulate cyclin dependent kinases during meiotic exit. A suppressor screen to identify genes that contribute to meiotic exit uncovered a mutation in cyclin-dependent kinase D;3 (CDKD;3) that alleviates meiotic defects in smg7 deficient plants. The CDKD;3 deficiency prevents aberrant meiotic divisions observed in smg7 mutants or delays their onset after initiation of cytokinesis, which permits formation of functional microspores. Although CDKD;3 acts as an activator of cyclin-dependent kinase A;1 (CDKA;1), the main cyclin dependent kinase that regulates meiosis, cdkd;3 mutation appears to promote meiotic exit independently of CDKA;1. Furthermore, analysis of CDKD;3 interactome revealed enrichment for proteins implicated in cytokinesis, suggesting a more complex function of CDKD;3 in cell cycle regulation.

3.
Plants (Basel) ; 13(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202315

RESUMO

Photosynthesis is among the first processes negatively affected by environmental cues and its performance directly determines plant cell fitness and ultimately crop yield. Primarily sites of photosynthesis, chloroplasts are unique sites also for the biosynthesis of precursors of the growth regulator auxin and for sensing environmental stress, but their role in intracellular auxin homeostasis, vital for plant growth and survival in changing environments, remains poorly understood. Here, we identified two ATP-binding cassette (ABC) subfamily B transporters, ABCB28 and ABCB29, which export auxin across the chloroplast envelope to the cytosol in a concerted action in vivo. Moreover, we provide evidence for an auxin biosynthesis pathway in Arabidopsis thaliana chloroplasts. The overexpression of ABCB28 and ABCB29 influenced stomatal regulation and resulted in significantly improved water use efficiency and survival rates during salt and drought stresses. Our results suggest that chloroplast auxin production and transport contribute to stomata regulation for conserving water upon salt stress. ABCB28 and ABCB29 integrate photosynthesis and auxin signals and as such hold great potential to improve the adaptation potential of crops to environmental cues.

4.
Science ; 377(6606): 629-634, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926014

RESUMO

Meiosis, at the transition between diploid and haploid life cycle phases, is accompanied by reprograming of cell division machinery and followed by a transition back to mitosis. We show that, in Arabidopsis, this transition is driven by inhibition of translation, achieved by a mechanism that involves processing bodies (P-bodies). During the second meiotic division, the meiosis-specific protein THREE-DIVISION MUTANT 1 (TDM1) is incorporated into P-bodies through interaction with SUPPRESSOR WITH MORPHOGENETIC EFFECTS ON GENITALIA 7 (SMG7). TDM1 attracts eIF4F, the main translation initiation complex, temporarily sequestering it in P-bodies and inhibiting translation. The failure of tdm1 mutants to terminate meiosis can be overcome by chemical inhibition of translation. We propose that TDM1-containing P-bodies down-regulate expression of meiotic transcripts to facilitate transition of cell fates to postmeiotic gametophyte differentiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ciclinas , Meiose , Corpos de Processamento , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular , Ciclinas/genética , Ciclinas/metabolismo , Meiose/genética , Mitose , Corpos de Processamento/metabolismo , Biossíntese de Proteínas
5.
Gene ; 524(1): 40-53, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23154062

RESUMO

The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Evolução Molecular , Genes de Plantas , Transferases/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , DNA Complementar/genética , DNA Complementar/metabolismo , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Modelos Genéticos , Dados de Sequência Molecular , Pentosefosfatos/metabolismo , Fenótipo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plastídeos/enzimologia , Plastídeos/genética , Transferases/metabolismo , Transformação Genética
6.
Funct Plant Biol ; 35(11): 1100-1111, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688858

RESUMO

Thiolases are ubiquitous enzymes involved in many essential biochemical processes. Biosynthetic thiolases, also known as acetoacetyl-CoA thiolases (AACT), catalyse a reversible Claisen-type condensation of two acetyl-CoA molecules to form acetoacetyl-CoA. Here, we report the characterisation of two genes from Arabidopsis thaliana L., ACT1 and ACT2, which encode two closely related AACT isoforms (AACT1 and AACT2, respectively). Transient expression of constructs encoding AACT1 and AACT2 fused to GFP revealed that the two proteins show a different subcellular localisation. While AACT1 is found in peroxisomes, AACT2 localises in the cytosol and the nucleus. The peroxisomal localisation of AACT1 depends on the presence of a C-terminal peroxisomal targeting sequence (PTS1) motif (Ser-Ala-Leu) not previously found in other organisms. ACT1 and ACT2 genes are also differentially expressed. Whereas ACT2 is expressed at relatively high level in all plant tissues, the expression of ACT1 is restricted to roots and inflorescences and its transcript is present at very low levels. The obtained results are in agreement with the involvement of AACT2 in catalysing the first step of the mevalonate pathway. The metabolic function of AACT1 is not clear at present, although its particular peroxisomal localisation might exclude a role in isoprenoid biosynthesis.

7.
Plant Mol Biol ; 62(4-5): 683-95, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16941216

RESUMO

The methylerythritol 4-phosphate (MEP) pathway synthesizes the precursors for an astonishing diversity of plastid isoprenoids, including the major photosynthetic pigments chlorophylls and carotenoids. Since the identification of the first two enzymes of the pathway, deoxyxylulose 5-phoshate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), they both were proposed as potential control points. Increased DXS activity has been shown to up-regulate the production of plastid isoprenoids in all systems tested, but the relative contribution of DXR to the supply of isoprenoid precursors is less clear. In this work, we have generated transgenic Arabidopsis thaliana plants with altered DXS and DXR enzyme levels, as estimated from their resistance to clomazone and fosmidomycin, respectively. The down-regulation of DXR resulted in variegation, reduced pigmentation and defects in chloroplast development, whereas DXR-overexpressing lines showed an increased accumulation of MEP- derived plastid isoprenoids such as chlorophylls, carotenoids, and taxadiene in transgenic plants engineered to produce this non-native isoprenoid. Changes in DXR levels in transgenic plants did not result in changes in DXS gene expression or enzyme accumulation, confirming that the observed effects on plastid isoprenoid levels in DXR-overexpressing lines were not an indirect consequence of altering DXS levels. The results indicate that the biosynthesis of MEP (the first committed intermediate of the pathway) limits the production of downstream isoprenoids in Arabidopsis chloroplasts, supporting a role for DXR in the control of the metabolic flux through the MEP pathway.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Arabidopsis/metabolismo , Complexos Multienzimáticos/metabolismo , Oxirredutases/metabolismo , Fosfatos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Primers do DNA , Plastídeos/metabolismo , RNA Mensageiro/genética , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA