Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Langmuir ; 35(31): 10014-10024, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30485112

RESUMO

Phospholipid coated microbubbles are currently in widespread clinical use as ultrasound contrast agents and under investigation for therapeutic applications. Previous studies have demonstrated the importance of the coating nanostructure in determining microbubble stability and its dependence upon both composition and processing method. While the influence of different phospholipids has been widely investigated, the role of other constituents such as emulsifiers has received comparatively little attention. Herein, we present an examination of the impact of polyethylene glycol (PEG) derivatives upon microbubble structure and properties. We present data using both pegylated phospholipids and a fluorescent PEG-40-stearate analogue synthesized in-house to directly observe its distribution in the microbubble coating. We examined microbubbles of clinically relevant sizes, investigating both their surface properties and population size distribution and stability. Domain formation was observed only on the surface of larger microbubbles, which were found to contain a higher concentration of PEG-40-stearate. Lipid analogue dyes were also found to influence domain formation compared with PEG-40-stearate alone. "Squeezing out" of PEG-40-stearate was not observed from any of the microbubble sizes investigated. At ambient temperature, microbubbles formulated with DSPE-PEG(2000) were found to be more stable than those containing PEG-40-stearate. At 37 °C, however, the stability in serum was found to be the same for both formulations, and no difference in acoustic backscatter was detected. This could potentially reduce the cost of PEGylated microbubbles and facilitate simpler attachment of targeting or therapeutic species. However, whether PEG-40-stearate sufficiently shields microbubbles to inhibit physiological clearance mechanisms still requires investigation.

2.
Nanotechnology ; 28(5): 055101, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28029105

RESUMO

Stimuli-responsive anticancer formulations can promote drug release and activation within the target tumour, facilitate cellular uptake, as well as improve the therapeutic efficacy of drugs and reduce off-target effects. In the present work, indocyanine green (ICG)-containing polyglutamate (PGA) nanoparticles were developed and characterized. Digestion of nanoparticles with cathepsin B, a matrix metalloproteinase overexpressed in the microenvironment of advanced tumours, decreased particle size and increased ICG cellular uptake. Incorporation of ICG in PGA nanoparticles provided the NIR-absorbing agent with time-dependent altered optical properties in the presence of cathepsin B. Having minimal dark toxicity, the formulation exhibited significant cytotoxicity upon NIR exposure. Combined use of the formulation with saporin, a ribosome-inactivating protein, resulted in synergistically enhanced cytotoxicity attributed to the photo-induced release of saporin from endo/lysosomes. The results suggest that this therapeutic approach can offer significant therapeutic benefit in the treatment of superficial malignancies, such as head and neck tumours.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Catepsina B/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Células Epiteliais/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Nanopartículas/química , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Corantes/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/efeitos da radiação , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Humanos , Verde de Indocianina/química , Raios Infravermelhos , Cinética , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos da radiação , Nanopartículas/ultraestrutura , Tamanho da Partícula , Ácido Poliglutâmico/química , Proteólise , Proteínas Inativadoras de Ribossomos Tipo 1/química , Saporinas
3.
Top Curr Chem ; 370: 203-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26589510

RESUMO

The interest in Quantum Dots as a class of nanomaterials has grown considerably since their discovery by Ekimov and Efros in the early 1980s. Although this early work focussed primarily on CdSe-based nanocrystals, the field has now expanded to include various classes of nanoparticles with different types of core, shell or passivation chemistry. Such differences can have a profound effect on the optical properties and potential biocompatibility of the resulting constructs. Although QDs have predominantly been used for imaging and sensing applications, more examples of their use as therapeutics are beginning to emerge. In this chapter we discuss the progress made over the past decade in developing QDs for imaging and therapeutic applications.


Assuntos
Nanomedicina , Pontos Quânticos , Humanos , Fotoquimioterapia , Biópsia de Linfonodo Sentinela
4.
Bioorg Med Chem ; 24(13): 3023-3028, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27234890

RESUMO

Sonodynamic therapy (SDT) involves the activation of a non-toxic sensitiser drug using low-intensity ultrasound to produce cytotoxic reactive oxygen species (ROS). Given the low tissue attenuation of ultrasound, SDT provides a significant benefit over the more established photodynamic therapy (PDT) as it enables activation of sensitisers at a greater depth within human tissue. In this manuscript, we compare the efficacy of aminolevulinic acid (ALA) mediated PDT and SDT in a squamous cell carcinoma (A431) cell line as well as the ability of these treatments to reduce the size of A431 ectopic tumours in mice. Similarly, the relative cytotoxic ability of Rose Bengal mediated PDT and SDT was investigated in a B16-melanoma cell line and also in a B16 ectopic tumour model. The results reveal no statistically significant difference in efficacy between ALA mediated PDT or SDT in the non-melanoma model while Rose Bengal mediated SDT was significantly more efficacious than PDT in the melanoma model. This difference in efficacy was, at least in part, attributed to the dark pigmentation of the melanoma cells that effectively filtered the excitation light preventing it from activating the sensitiser while the use of ultrasound circumvented this problem. These results suggest SDT may provide a better outcome than PDT when treating highly pigmented cancerous skin lesions.


Assuntos
Ácido Aminolevulínico/uso terapêutico , Melanoma/terapia , Fotoquimioterapia , Neoplasias Cutâneas/terapia , Terapia por Ultrassom , Animais , Xenoenxertos , Humanos , Camundongos SCID
5.
Adv Exp Med Biol ; 880: 429-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26486350

RESUMO

Sonodynamic therapy (SDT) represents an emerging approach that offers the possibility of non-invasively eradicating solid tumors in a site-directed manner. It involves the sensitization of target tissues with a non-toxic sensitizing chemical agent and subsequent exposure of the sensitized tissues to relatively low-intensity ultrasound. Essentially, both aspects (the sensitization and ultrasound exposure) are harmless, and cytotoxic events occur when both are combined. Due to the significant depth that ultrasound penetrates tissue, the approach provides an advantage over similar alternative approaches, such as photodynamic therapy (PDT), in which less penetrating light is employed to provide the cytotoxic effect in sensitized tissues. This suggests that sonodynamic therapy may find wider clinical application, particularly for the non-invasive treatment of less accessible lesions. Early SDT-based approaches employed many of the sensitizers used in PDT, although the manner in which ultrasound activates the sensitizer differs from activation events in PDT. Here we will review the currently accepted mechanisms by which ultrasound activates sensitizers to elicit cytotoxic effects. In addition, we will explore the breath of evidence from in-vitro and in-vivo SDT-based studies, providing the reader with an insight into the therapeutic potential offered by SDT in the treatment of cancer.


Assuntos
Neoplasias/terapia , Fotoquimioterapia , Terapia por Ultrassom , Ensaios Clínicos como Assunto , Humanos , Luminescência , Espécies Reativas de Oxigênio/metabolismo
6.
Chem Soc Rev ; 44(13): 4415-32, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25742963

RESUMO

Luminescent sensors and switches continue to play a key role in shaping our understanding of key biochemical processes, assist in the diagnosis of disease and contribute to the design of new drugs and therapies. Similarly, their contribution to the environment cannot be understated as they offer a portable means to undertake field testing for hazardous chemicals and pollutants such as heavy metals. From a physiological perspective, the Group I and II metal ions are among the most important in the periodic table with blood plasma levels of H(+), Na(+) and Ca(2+) being indicators of several possible disease states. In this review, we examine the progress that has been made in the development of luminescent probes for Group I and Group II ions as well as protons. The potential applications of these probes and the mechanism involved in controlling their luminescent response upon analyte binding will also be discussed.


Assuntos
Álcalis/sangue , Técnicas Biossensoriais , Cátions/sangue , Corantes Fluorescentes , Metais Alcalinoterrosos/sangue , Prótons , Humanos , Modelos Moleculares , Imagem Óptica
7.
Langmuir ; 31(35): 9557-65, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26275045

RESUMO

A strategy to probe supramolecular nanocarriers and their cargo in the intracellular space was developed on the basis of fluorescence measurements and energy transfer. It relies on the covalent attachment of an energy donor, or acceptor, to the macromolecular backbone of amphiphilic polymers and the noncovalent encapsulation of a complementary acceptor, or donor, in the resulting micelles. In aqueous environments, these macromolecules self-assemble into nanostructured constructs and bring the complementary chromophores in close proximity to enable efficient energy transfer. These supramolecular assemblies travel from the extracellular to the intracellular space and retain their integrity in the process. Indeed, donors and acceptors remain close to each other after internalization, and excitation of the former chromophores translates into significant intracellular emission from the latter. Furthermore, these supramolecular assemblies exchange their components with fast kinetics in aqueous dispersions because of the reversible character of the noncovalent contacts holding them together. As a result, micelles incorporating exclusively the donors and nanocarriers containing only the acceptors scramble their chromophoric building blocks, upon mixing, to allow the transfer of energy. These dynamic processes can be reproduced in the intracellular environment with the sequential incubation of cells with the two sets of complementary nanostructured assemblies. Thus, these operating principles and choice of supramolecular synthons are particularly valuable to monitor self-assembling nanocarriers and their cargo inside living cells and can facilitate the elucidation of the behavior of these promising delivery vehicles in a diversity of biological specimens.


Assuntos
Portadores de Fármacos/química , Fluorescência , Nanopartículas/química , Transferência de Energia , Células HeLa , Humanos , Estrutura Molecular
8.
Int J Hyperthermia ; 31(2): 107-17, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25582025

RESUMO

Sonodynamic therapy (SDT) has emerged as a promising option for the minimally invasive treatment of solid cancerous tumours. SDT requires the combination of three distinct components: a sensitising drug, ultrasound, and molecular oxygen. Individually, these components are non-toxic but when combined together generate cytotoxic reactive oxygen species (ROS). The major advantage of SDT over its close relative photodynamic therapy (PDT), is the increased penetration of ultrasound through mammalian tissue compared to light. As a result, SDT can be used to treat a wider array of deeper and less accessible tumours than PDT. In this article, we critically review the current literature on SDT and discuss strategies that have been developed in combination with SDT to enhance the therapeutic outcome.


Assuntos
Neoplasias/terapia , Terapia por Ultrassom , Humanos , Espécies Reativas de Oxigênio
9.
Clin Oral Investig ; 19(6): 1395-404, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25381018

RESUMO

OBJECTIVES: This study aimed to develop and characterise a new three-component dental whitening formulation which is as effective as the currently used carbamide peroxide but at significantly lower hydrogen peroxide concentrations. MATERIALS AND METHODS: The new formulation (Carbamide Plus) was prepared containing hydrogen peroxide, urea, and sodium tripolyphosphate and compared directly with carbamide peroxide (containing just hydrogen peroxide and urea). To evaluate the clinical effectiveness of 5% Carbamide Plus, a randomised double-blind placebo-controlled clinical trial was conducted comparing the tooth colour of 33 patients using L*a*b* scores at baseline and after a 2-week whitening treatment. The behaviour of the three components in solution was determined by (1)H and (31)P NMR spectroscopy and pH dilution experiments. RESULTS: This clinical trial revealed that 5% whitening gels containing Carbamide Plus were as effective as those containing 10% carbamide peroxide. (1)H and (31)P NMR spectroscopy revealed strong intermolecular interactions between hydrogen peroxide and both urea and sodium tripolyphosphate (STPP) with little apparent interaction between urea and STPP. CONCLUSIONS: In this manuscript, we postulate that this increased whitening efficiency is due to a marked increase in local pH upon dilution which destabilises the hydrogen peroxide and expedites the whitening process. We postulate Carbamide Plus to be a three-component adduct with two molecules of carbamide peroxide binding to a central STPP unit with no direct interaction between STPP and urea. There were no statistically significant differences between Carbamide Plus and 10% carbamide peroxide in tooth-whitening achieved at 2 weeks. These results were recorded following 2 weeks of 2-h daily wear of at-home trays. CLINICAL RELEVANCE: Carbamide Plus offers the potential of using significantly lower levels of hydrogen peroxide concentration to achieve similar dental whitening effects.


Assuntos
Peróxidos/química , Clareamento Dental/métodos , Ureia/análogos & derivados , Peróxido de Carbamida , Método Duplo-Cego , Combinação de Medicamentos , Humanos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Polifosfatos/química , Ureia/química
10.
J Am Chem Soc ; 136(22): 7907-13, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24816167

RESUMO

Decyl and oligo(ethylene glycol) chains were appended to the same poly(methacrylate) backbone to generate an amphiphilic polymer with a ratio between hydrophobic and hydrophilic segments of 2.5. At concentrations greater than 10 µg mL(-1) in neutral buffer, multiple copies of this particular macromolecule assemble into nanoparticles with a hydrodynamic diameter of 15 nm. In the process of assembling, these nanoparticles can capture anthracene donors and borondipyrromethene acceptors within their hydrophobic interior and permit the transfer of excitation energy with an efficiency of 95%. Energy transfer is observed also if nanocarriers containing exclusively the donors are mixed with nanoparticles preloaded separately with the acceptors in aqueous media. The two sets of supramolecular assemblies exchange their guests with fast kinetics upon mixing to co-localize complementary chromophores within the same nanostructured container and enable energy transfer. After guest exchange, the nanoparticles can cross the membrane of cervical cancer cells and bring the co-entrapped donors and acceptors within the intracellular environment. Alternatively, intracellular energy transfer is also established after sequential cell incubation with nanoparticles containing the donors first and then with nanocarriers preloaded with the acceptors or vice versa. Under these conditions, the nanoparticles exchange their cargo only after internalization and allow energy transfer exclusively within the cell interior. Thus, the dynamic character of such supramolecular containers offers the opportunity to transport independently complementary species inside cells and permit their interaction only within the intracellular space.


Assuntos
Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Antracenos/química , Membrana Celular/metabolismo , Transferência de Energia , Células HeLa , Humanos , Nanopartículas , Porfobilinogênio/análogos & derivados , Porfobilinogênio/química
11.
Langmuir ; 30(49): 14926-30, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25409533

RESUMO

Microbubbles (MBs) have recently emerged as promising delivery vehicles for sensitizer drugs in sonodynamic therapy (SDT). The ability to selectively destroy the MB and activate the sensitizer using an external ultrasound trigger could provide a minimally invasive and highly targeted therapy. While lipid MBs have been approved for use as contrast agents in diagnostic ultrasound, the attachment of sensitizer drugs to their surface results in a significant reduction in particle stability. In this Article, we prepare both lipid and polymer (PLGA) MBs with rose bengal attached to their surface and demonstrate that PLGA MB conjugates are significantly more stable than their lipid counterparts. In addition, the improved stability offered by the PLGA shell does not hinder their selective destruction using therapeutically acceptable ultrasound intensities. Furthermore, we demonstrate that treatment of ectopic human tumors (BxPC-3) in mice with the PLGA MB-rose bengal conjugate and ultrasound reduced tumor volume by 34% 4 days after treatment while tumors treated with the conjugate alone increased in volume by 48% over the same time period. Therefore, PLGA MBs may offer a more stable alternative to lipid MBs for the site specific delivery of sensitizers in SDT.


Assuntos
Sistemas de Liberação de Medicamentos , Microbolhas , Ultrassom , Animais , Linhagem Celular , Sobrevivência Celular , Cumarínicos , Feminino , Células HeLa , Humanos , Camundongos , Estrutura Molecular , Terapia por Ultrassom , Neoplasias Uterinas/terapia
12.
Analyst ; 138(13): 3646-50, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23696964

RESUMO

A novel vitamin B6 Schiff base analog (L) was synthesized by combining vitamin B6 cofactor pyridoxal with 2-aminophenol. Receptor L displays a color change detectable by the naked-eye from yellow to red in the presence of fluoride and acetate due to the formation of hydrogen bonding host-guest complexes in 1 : 1 stoichiometry. Importantly, receptor L showed fluoride-selective 'turn-on' fluorescent response with a detection limit (3σ) of 7.39 × 10(-8) M.


Assuntos
Técnicas de Química Analítica/instrumentação , Fluoretos/análise , Vitamina B 6/química , Fluoretos/química , Modelos Moleculares , Conformação Molecular , Bases de Schiff/química , Espectrometria de Fluorescência
13.
Chem Soc Rev ; 41(21): 7195-227, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22885471

RESUMO

Iron is one of the most important elements in metabolic processes, being indispensable for all living systems and therefore it is extensively distributed in environmental and biological materials. However, both its deficiency and excess from the normal permissible limit can induce serious disorders. Therefore, several analytical techniques have been adopted for the detection of iron. Among the various techniques used for its detection, the method based on fluorescent sensors has received considerable interest in recent years because of its ability to provide online monitoring of very low concentrations without any pre-treatment of the sample together with the advantages of spatial and temporal resolution. In this article, efforts have been made to review the various molecular and supramolecular fluorescent sensors that have been developed for the selective detection of iron(III).


Assuntos
Técnicas de Química Analítica/instrumentação , Corantes Fluorescentes/química , Ferro/análise , Ferro/química , Espectrometria de Fluorescência
14.
Antibiotics (Basel) ; 12(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37370392

RESUMO

With the advancement of biomedical research into antimicrobial treatments for various diseases, the source and delivery of antibiotics have attracted attention. In periodontal diseases, antibiotics are integral in positive treatment outcomes; however, the use of antibiotics is with caution as the potential for the emergence of resistant strains is of concern. Over the years, conventional routes of drug administration have been proven to be effective for the treatment of PD, yet the problem of antibiotic resistance to conventional therapies continues to remain a setback in future treatments. Hydrogels fabricated from natural and synthetic polymers have been extensively applied in biomedical sciences for the delivery of potent biological compounds. These polymeric materials either have intrinsic antibacterial properties or serve as good carriers for the delivery of antibacterial agents. The biocompatibility, low toxicity and biodegradability of some hydrogels have favoured their consideration as prospective carriers for antibacterial drug delivery in PD. This article reviews PD and its antibiotic treatment options, the role of bacteria in PD and the potential of hydrogels as antibacterial agents and for antibiotic drug delivery in PD. Finally, potential challenges and future directions of hydrogels for use in PD treatment and diagnosis are also highlighted.

15.
J Cancer Res Clin Oncol ; 149(8): 5007-5023, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36319895

RESUMO

PURPOSE: Sonodynamic therapy (SDT) is emerging as a cancer treatment alternative with significant advantages over conventional therapies, including its minimally invasive and site-specific nature, its radical antitumour efficacy with minimal side effects, and its capacity to raise an antitumour immune response. The study explores the efficacy of SDT in combination with nanotechnology against pancreatic ductal adenocarcinoma. METHODS: A nanoparticulate formulation (HPNP) based on a cathepsin B-degradable glutamate-tyrosine co-polymer that carries hematoporphyrin was used in this study for the SDT-based treatment of PDAC. Cathepsin B levels in BxPC-3 and PANC-1 cells were correlated to cellular uptake of HPNP. The HPNP efficiency to induce a sonodynamic effect at varying ultrasound parameters, and at different oxygenation and pH conditions, was investigated. The biodistribution, tumour accumulation profile, and antitumour efficacy of HPNP in SDT were examined in immunocompetent mice carrying bilateral ectopic murine pancreatic tumours. The immune response profile of excised tumour tissues was also examined. RESULTS: The HPNP formulation significantly improved cellular uptake of hematoporphyrin for both BxPC-3 and PANC-1 cells, while increase of cellular uptake was positively correlated in PANC-1 cells. There was a clear SDT-induced cytotoxicity at the ultrasound conditions tested, and the treatment impaired the capacity of both BxPC-3 and PANC-1 cells to form colonies. The overall acoustic energy and pulse length, rather than the power density, were key in eliciting the effects observed in vitro. The SDT treatment in combination with HPNP resulted in 21% and 27% reduction of the target and off-target tumour volumes, respectively, within 24 h. A single SDT treatment elicited an antitumour effect that was characterized by an SDT-induced decrease in immunosuppressive T cell phenotypes. CONCLUSION: SDT has significant potential to serve as a monotherapy or adjunctive treatment for inoperable or borderline resectable PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Terapia por Ultrassom , Animais , Camundongos , Catepsina B , Terapia por Ultrassom/métodos , Distribuição Tecidual , Neoplasias Pancreáticas/terapia , Hematoporfirinas/farmacologia , Carcinoma Ductal Pancreático/terapia , Nanotecnologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio , Neoplasias Pancreáticas
16.
Eur J Pharm Biopharm ; 192: 196-205, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858804

RESUMO

Docetaxel (DTX) chemotherapy is commonly used in the treatment of patients with advanced prostate cancer demonstrating modest improvements in survival. As these patients are often elderly and the chemotherapy treatment is not targeted, it is often poorly tolerated. More targeted approaches that increase therapeutic efficacy yet reduce the amount of toxic chemotherapy administered are needed. In this manuscript, we investigate the potential of ultrasound targeted microbubble destruction (UTMD) to deliver a combination of docetaxel chemotherapy and Rose Bengal mediated sonodynamic therapy (SDT) in pre-clinical prostate cancer models. A Rose Bengal modified phospholipid was synthesized and used as a component lipid to prepare a microbubble (MB) formulation that was also loaded with DTX. The DTX-MB-RB formulation was used in the UTMD mediated treatment of androgen sensitive and androgen resistant 3D spheroid and murine models of prostate cancer. Results from the 3D spheroid experiments showed UTMD mediated DTX-MB-RB chemo-sonodynamic therapy to be significantly more effective at reducing cell viability than UTMD mediated DTX or SDT treatment alone. In an androgen sensitive murine model of prostate cancer, UTMD mediated DTX-MB-RB chemo-sonodynamic therapy was as effective as androgen deprivation therapy (ADT) at controlling tumour growth. However, when both treatments were combined, a significant improvement in tumour growth delay was observed. In an androgen resistant murine model, UTMD mediated DTX-MB-RB chemo-sonodynamic therapy was significantly more effective than standard DTX monotherapy. Indeed, the DTX dose administered using the DTX-MB-RB formulation was 91% less than standard DTX monotherapy. As a result, UTMD mediated DTX-MB-RB treatment was well tolerated while animals treated with DTX monotherapy displayed significant weight loss which was attributed to acute toxic effects. These results highlight the potential of UTMD mediated DTX-MB-RB chemo-sonodynamic therapy as a targeted, well tolerated alternative treatment for advanced prostate cancer.


Assuntos
Neoplasias da Próstata , Rosa Bengala , Humanos , Masculino , Animais , Camundongos , Idoso , Docetaxel , Microbolhas , Antagonistas de Androgênios , Androgênios , Modelos Animais de Doenças , Neoplasias da Próstata/tratamento farmacológico
17.
J Am Chem Soc ; 134(4): 2276-83, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22217330

RESUMO

In search of strategies to photoactivate the luminescence of semiconductor quantum dots, we devised a synthetic approach to attach photocleavable 2-nitrobenzyl groups to CdSe-ZnS core-shell quantum dots coated with hydrophilic polymeric ligands. The emission intensity of the resulting nanostructured constructs increases by more than 60% with the photolysis of the 2-nitrobenzyl appendages. Indeed, the photoinduced separation of the organic chromophores from the inorganic nanoparticles suppresses an electron-transfer pathway from the latter to the former and is mostly responsible for the luminescence enhancement. However, the thiol groups anchoring the polymeric envelope to the ZnS shell also contribute to the photoinduced emission increase. Presumably, their photooxidation eliminates defects on the nanoparticle surface and promotes the radiative deactivation of the excited quantum dots. This effect is fully reversible but its magnitude is only a fraction of the change caused by the photocleavage of the 2-nitrobenzyl groups. In addition, these particular quantum dots can cross the membrane of model cells and their luminescence increases by ~80% after the intracellular photocleavage of the 2-nitrobenzyl quenchers. Thus, photoswitchable luminescent constructs with biocompatible character can be assembled combining the established photochemistry of the 2-nitrobenzyl photocage with the outstanding photophysical properties of semiconductor quantum dots and the hydrophilic character of appropriate polymeric ligands.


Assuntos
Compostos de Cádmio/química , Luminescência , Nitrobenzenos/química , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química , Animais , Células CHO , Células Cultivadas , Cricetinae , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Estrutura Molecular , Nitrobenzenos/síntese química , Processos Fotoquímicos
18.
J Fluoresc ; 22(3): 795-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22051982

RESUMO

A simple fluorescent sensor 1 has been developed for the recognition of Fe(III) in semi-aqueous solution at pH 7.0. The sensor, containing two Schiff base type receptors directly connected to naphthalene fluorophores, shows a concentration dependent decrease in emission intensity upon Fe(III) addition. The sensor was selective for Fe(III) over other metal ions and can measure Fe(III) ion concentration between 0.05 and 0.12 mM. The binding stoichiometry was established as 1:1 (host: guest) with a binding constant (Logß) of 4.01. Furthermore, the addition of Fe(III) to a solution of 1 caused a colour change from light yellow to colourless meaning 1 is also capable of detecting Fe(III) by the naked eye.


Assuntos
Compostos Férricos/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Naftalenos/química , Bases de Schiff/química , Soluções , Água/química
19.
J Mycol Med ; 32(4): 101296, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35660541

RESUMO

INTRODUCTION AND AIM: The indiscriminate use and adverse effects of the main conventional antifungal agents compromise the effectiveness of treating vulvovaginal candidiasis (VVC), mainly caused by the species Candida albicans. This study evaluated the effectiveness of photodynamic therapy (PDT) and the in vitro and in vivo anti-candida potential of the hypericin (HYP)-loaded nanostructured lipid carriers (NLC). MATERIALS AND METHODS: Empty NLC and NLC-HYP were characterized by the dynamic light scattering technique and transmission electron microscopy to evaluate the average particle size distribution and its morphologies. The in vitro inhibition photodynamic effect of the systems was tested to reduce the planktonic viability of C. albicans. The therapeutic assay photodynamic of the systems was performed to treat VVC in mice. RESULTS: Empty NLC and NLC-HYP presented values of average hydrodynamic diameter, polydispersity index, and ζ-potential from 136 to 133 nm, 0.16 to 0.22, and -18 to -30 mV, respectively, on day 30. Microscopically, the systems showed spherical morphologies and nanoscale particles. Furthermore, in the in vitro inhibition assay, the treatment of PDT with NLC-HYP (NLC-HYP+) showed a significant reduction of the C. albicans planktonic viability compared to YNB negative control after 5 min of LED light irradiation. In the in vivo therapeutic assay, the antifungal group (vaginal antifungal cream) and NLC-HYP+ evaluated in the dark and by PDT, respectively, had a significant log10 reduction in fungal burden compared to the infected group on day 8 of the VVC treatment. CONCLUSION: Due to the in vitro and in vivo anti-candida potential, PDT-mediated systems can be an effective strategy in VVC therapy.


Assuntos
Candidíase Vulvovaginal , Fotoquimioterapia , Humanos , Feminino , Camundongos , Animais , Candidíase Vulvovaginal/tratamento farmacológico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans , Candida , Lipídeos/farmacologia , Lipídeos/uso terapêutico
20.
J Am Chem Soc ; 133(4): 871-9, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21182323

RESUMO

We designed and synthesized an amphiphilic copolymer with pendant hydrophobic decyl and hydrophilic poly(ethylene glycol) chains along a common poly(methacrylate) backbone. This macromolecular construct captures hydrophobic boron dipyrromethene fluorophores and hydrophobic spiropyran photochromes and transfers mixtures of both components in aqueous environments. Within the resulting hydrophilic supramolecular assemblies, the spiropyran components retain their photochemical properties and switch reversibly to the corresponding merocyanine isomers upon ultraviolet illumination. Their photoinduced transformations activate intermolecular electron and energy transfer pathways, which culminate in the quenching of the boron dipyrromethene fluorescence. As a result, the emission intensity of these supramolecular constructs can be modulated in aqueous environments under optical control. Furthermore, the macromolecular envelope around the fluorescent and photochromic components can cross the membrane of Chinese hamster ovarian cells and transport its cargo unaffected into the cytosol. Indeed, the fluorescence of these supramolecular constructs can be modulated also intracellularly by operating the photochromic component with optical inputs. In addition, cytotoxicity tests demonstrate that these supramolecular assemblies and the illumination conditions required for their operation have essentially no influence on cell viability. Thus, supramolecular events can be invoked to construct fluorescent and photoswitchable systems from separate components, while imposing aqueous solubility and biocompatibility on the resulting assemblies. In principle, this simple protocol can evolve into a general strategy to deliver and operate intracellularly functional molecular components under optical control.


Assuntos
Materiais Revestidos Biocompatíveis/química , Corantes Fluorescentes/química , Processos Fotoquímicos , Animais , Células CHO , Permeabilidade da Membrana Celular , Materiais Revestidos Biocompatíveis/metabolismo , Materiais Revestidos Biocompatíveis/toxicidade , Cricetinae , Cricetulus , Desenho de Fármacos , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/toxicidade , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA