RESUMO
QUESTION: Pseudomonas aeruginosa (Pa) is a common pathogen that contributes to progressive lung disease in Cystic Fibrosis (CF). Genetic factors other than CF-causing CFTR variations contribute approximately 85% of the variation in chronic Pa infection age in CF according to twin studies, but the susceptibility loci remain unknown. Our objective is to advance understanding of the genetic basis of host susceptibility to Pa infection. MATERIALS AND METHODS: We conducted a genome-wide association study (GWAS) of chronic Pa infection age in 1037 Canadians with CF. We subsequently assessed the genetic correlation between chronic Pa infection age and lung function through polygenic risk score (PRS) analysis and inferred their causal relationship through bi-directional Mendelian Randomization analysis. RESULTS: Two novel genome-wide significant loci with lead SNPs rs62369766 (chr5p12; p-value= 1.98 ×10-8) and rs927553 (chr13q12.12; p-value= 1.91 × 10-8) were associated with chronic Pa infection age. The rs62369766 locus was validated using an independent French cohort (N=501). Furthermore, PRS constructed from CF lung function-associated SNPs was significantly associated with chronic Pa infection age (p-value=0.002). Finally, our analysis presented evidence for a causal effect of lung function on the chronic Pa infection age (Beta=0.782â years, p-value= 4.24 × 10-4). In the reverse direction, we observed a moderate effect (Beta=0.002, p-value=0.012). CONCLUSIONS: We identified two novel loci that are associated with chronic Pa infection age in individuals with CF. Additionally, we provided evidence of common genetic contributors and a potential causal relationship between Pa infection susceptibility and lung function in CF. Therapeutics targeting these genetic factors may delay the onset of chronic infections which accounts for significant remaining morbidity in CF.
RESUMO
BACKGROUND: Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. RESULTS: We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. CONCLUSIONS: These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination.
Assuntos
Neoplasias , Núcleosídeo-Difosfato Quinase , Animais , Membranas Intracelulares , Camundongos , Mitocôndrias , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Nucleosídeo Difosfato Quinase D/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/metabolismoRESUMO
The solute carrier family 6 member 14 (SLC6A14) protein imports and concentrates all neutral amino acids as well as the two cationic acids lysine and arginine into the cytoplasm of different cell types. Primarily described as involved in several cancer and colonic diseases physiopathological mechanisms, the SLC6A14 gene has been more recently identified as a genetic modifier of cystic fibrosis (CF) disease severity. It was indeed shown to have a pleiotropic effect, modulating meconium ileus occurrence, lung disease severity, and precocity of P. aeruginosa airway infection. The biological mechanisms explaining the impact of SLC6A14 on intestinal and lung phenotypes of CF patients are starting to be elucidated. This review focuses on SLC6A14 in lung and gastrointestinal physiology and physiopathology, especially its involvement in the pathophysiology of CF disease.
Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Fibrose Cística/patologia , Trato Gastrointestinal/metabolismo , Pulmão/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Doenças do Colo/genética , Doenças do Colo/metabolismo , Doenças do Colo/patologia , Fibrose Cística/genética , Fibrose Cística/metabolismo , Variação Genética , Humanos , Desequilíbrio de Ligação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Índice de Gravidade de DoençaRESUMO
Membrane receptor intracellular trafficking and signalling are frequently altered in cancers. Our aim was to investigate whether clathrin-dependent trafficking modulates signalling of the ErbB receptor family in response to amphiregulin (AR), EGF, heparin-binding EGF-like growth factor (HB-EGF) and heregulin-1ß (HRG). Experiments were performed using three hepatocellular carcinoma (HCC) cell lines, Hep3B, HepG2 and PLC/PRF/5, expressing various levels of EGFR, ErbB2 and ErbB3. Inhibition of clathrin-mediated endocytosis (CME), by down-regulating clathrin heavy chain expression, resulted in a cell- and ligand-specific pattern of phosphorylation of the ErbB receptors and their downstream effectors. Clathrin down-regulation significantly decreased the ratio between phosphorylated EGFR (pEGFR) and total EGFR in all cell lines when stimulated with AR, EGF, HB-EGF or HRG, except in HRG-stimulated Hep3B cells in which pEGFR was not detectable. The ratio between phosphorylated ErbB2 and total ErbB2 was significantly decreased in clathrin down-regulated Hep3B cells stimulated with any of the ligands, and in HRG-stimulated PLC/PRF/5 cells. The ratio between phosphorylated ErbB3 and total ErbB3 significantly decreased in clathrin down-regulated cell lines upon stimulation with EGF or HB-EGF. STAT3 phosphorylation levels significantly increased in all cell lines irrespective of stimulation, while that of AKT remained unchanged, except in AR-stimulated Hep3B and HepG2 cells in which pAKT was significantly decreased. Finally, ERK phosphorylation was insensitive to clathrin inhibition. Altogether, our observations indicate that clathrin regulation of ErbB signalling in HCC is a complex process that likely depends on the expression of ErbB family members and on the autocrine/paracrine secretion of their ligands in the tumour environment.
Assuntos
Carcinoma Hepatocelular/metabolismo , Clatrina/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor ErbB-2/metabolismo , Transdução de Sinais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Imunofluorescência , Humanos , Ligantes , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Receptor ErbB-3/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Colorectal cancers (CRCs) displaying microsatellite instability (MSI) most often result from MLH1 deficiency. The aim of this study was to assess the impact of MLH1 expression per se on tumor evolution after curative surgical resection using a xenograft tumor model. Transplantable tumors established with the human MLH1-deficient HCT116 cell line and its MLH1-complemented isogenic clone, mlh1-3, were implanted onto the caecum of NOD/SCID mice. Curative surgical resection was performed at day 10 in half of the animals. The HCT116-derived tumors were more voluminous compared to the mlh1-3 ones (P = .001). Lymph node metastases and peritoneal carcinomatosis occurred significantly more often in the group of mice grafted with HCT116 (P = .007 and P = .035, respectively). Mlh1-3-grafted mice did not develop peritoneal carcinomatosis or liver metastasis. After surgical resection, lymph node metastases only arose in the group of mice implanted with HCT116 and the rate of cure was significantly lower than in the mlh1-3 group (P = .047). The murine orthotopic xenograft model based on isogenic human CRC cell lines allowed us to reveal the impact of MLH1 expression on tumor evolution in mice who underwent curative surgical resection and in mice whose tumor was left in situ. Our data indicate that the behavior of MLH1-deficient CRC is not only governed by mutations arising in genes harboring microsatellite repeated sequences but also from their defect in MLH1 as such.
Assuntos
Carcinoma/genética , Neoplasias do Colo/genética , Proteína 1 Homóloga a MutL/genética , Animais , Carcinoma/patologia , Carcinoma/cirurgia , Neoplasias do Colo/patologia , Neoplasias do Colo/cirurgia , Feminino , Células HCT116 , Humanos , Metástase Linfática , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína 1 Homóloga a MutL/metabolismo , MutaçãoRESUMO
Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder associating macroglossia, abdominal wall defects, visceromegaly, and a high risk of childhood tumor. Molecular anomalies are mostly epigenetic; however, mutations of CDKN1C are implicated in 8% of cases, including both sporadic and familial forms. We aimed to describe the phenotype of BWS patients with CDKN1C mutations and develop a functional test for CDKN1C mutations. For each propositus, we sequenced the three exons and intron-exon boundaries of CDKN1C in patients presenting a BWS phenotype, including abdominal wall defects, without 11p15 methylation defects. We developed a functional test based on flow cytometry. We identified 37 mutations in 38 pedigrees (50 patients and seven fetuses). Analysis of parental samples when available showed that all mutations tested but one was inherited from the mother. The four missense mutations led to a less severe phenotype (lower frequency of exomphalos) than the other 33 mutations. The following four tumors occurred: one neuroblastoma, one ganglioneuroblastoma, one melanoma, and one acute lymphoid leukemia. Cases of BWS caused by CDKN1C mutations are not rare. CDKN1C sequencing should be performed for BWS patients presenting with abdominal wall defects or cleft palate without 11p15 methylation defects or body asymmetry, or in familial cases of BWS.
Assuntos
Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Estudos de Associação Genética , Impressão Genômica , Fenótipo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Feminino , Genótipo , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Alinhamento de SequênciaRESUMO
Airway epithelial cells form a physical barrier against inhaled pathogens and coordinate innate immune responses in the lungs. Bronchial cells in people with cystic fibrosis (pwCF) are colonized by Pseudomonas aeruginosa because of the accumulation of mucus in the lower airways and an altered immune response. This leads to chronic inflammation, lung tissue damage, and accelerated decline in lung function. Thus, identifying the molecular factors involved in the host response in the airways is crucial for developing new therapeutic strategies. The septin (SEPT) cytoskeleton is involved in tissue barrier integrity and anti-infective responses. SEPT7 is critical for maintaining SEPT complexes and for sensing pathogenic microbes. In the lungs, SEPT7 may be involved in the epithelial barrier resistance to infection; however, its role in cystic fibrosis (CF) P. aeruginosa infection is unknown. This study aimed to investigate the role of SEPT7 in controlling P. aeruginosa infection in bronchial epithelial cells, particularly in CF. The study findings showed that SEPT7 encages P. aeruginosa in bronchial epithelial cells and its inhibition downregulates the expression of other SEPTs. In addition, P. aeruginosa does not regulate SEPT7 expression. Finally, we found that inhibiting SEPT7 expression in bronchial epithelial cells (BEAS-2B 16HBE14o- and primary cells) resulted in higher levels of internalized P. aeruginosa and decreased IL-6 production during infection, suggesting a crucial role of SEPT7 in the host response against this bacterium. However, these effects were not observed in the CF cells (16HBE14o-/F508del and primary cells) which may explain the persistence of infection in pwCF. The study findings suggest the modification of SEPT7 expression as a potential approach for the anti-infective control of P. aeruginosa, particularly in CF.
Assuntos
Brônquios , Fibrose Cística , Células Epiteliais , Pseudomonas aeruginosa , Septinas , Pseudomonas aeruginosa/imunologia , Fibrose Cística/microbiologia , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Humanos , Septinas/metabolismo , Septinas/genética , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Brônquios/microbiologia , Brônquios/patologia , Brônquios/metabolismo , Brônquios/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/metabolismo , Linhagem CelularRESUMO
Integrin endocytosis is essential for many fundamental cellular processes. Whether and how the internalization impacts cellular mechanics remains elusive. Whereas previous studies reported the contribution of the integrin activator, talin, in force development, the involvement of inhibitors is less documented. We identified ICAP-1 as an integrin inhibitor involved in mechanotransduction by co-working with NME2 to control clathrin-mediated endocytosis of integrins at the edge of focal adhesions (FA). Loss of ICAP-1 enables ß3-integrin-mediated force generation independently of ß1 integrin. ß3-integrin-mediated forces were associated with a decrease in ß3 integrin dynamics stemming from their reduced diffusion within adhesion sites and slow turnover of FA. The decrease in ß3 integrin dynamics correlated with a defect in integrin endocytosis. ICAP-1 acts as an adaptor for clathrin-dependent endocytosis of integrins. ICAP-1 controls integrin endocytosis by interacting with NME2, a key regulator of dynamin-dependent clathrin-coated pits fission. Control of clathrin-mediated integrin endocytosis by an inhibitor is an unprecedented mechanism to tune forces at FA.
Assuntos
Clatrina , Endocitose , Adesões Focais , Integrina beta1 , Integrina beta3 , Clatrina/metabolismo , Endocitose/fisiologia , Integrina beta1/genética , Mecanotransdução Celular , Talina/genéticaRESUMO
BACKGROUND: Sustained neuroinflammation strongly contributes to the pathogenesis of pain. The clinical challenge of chronic pain relief led to the identification of molecules such as cytokines, chemokines and more recently matrix metalloproteinases (MMPs) as putative therapeutic targets. Evidence points to a founder member of the matricial CCN family, NOV/CCN3, as a modulator of these inflammatory mediators. We thus investigated the possible involvement of NOV in a preclinical model of persistent inflammatory pain. METHODS: We used the complete Freund's adjuvant (CFA)-induced model of persistent inflammatory pain and cultured primary sensory neurons for in vitro experiments. The mRNA expression of NOV and pro-inflammatory factors were measured with real-time quantitative PCR, CCL2 protein expression was assessed using ELISA, MMP-2 and -9 activities using zymography. The effect of drugs on tactile allodynia was evaluated by the von Frey test. RESULTS: NOV was expressed in neurons of both dorsal root ganglia (DRG) and dorsal horn of the spinal cord (DHSC). After intraplantar CFA injection, NOV levels were transiently and persistently down-regulated in the DRG and DHSC, respectively, occurring at the maintenance phase of pain (15 days). NOV-reduced expression was restored after treatment of CFA rats with dexamethasone. In vitro, results based on cultured DRG neurons showed that siRNA-mediated inhibition of NOV enhanced IL-1ß- and TNF-α-induced MMP-2, MMP-9 and CCL2 expression whereas NOV addition inhibited TNF-α-induced MMP-9 expression through ß1 integrin engagement. In vivo, the intrathecal delivery of MMP-9 inhibitor attenuated mechanical allodynia of CFA rats. Importantly, intrathecal administration of NOV siRNA specifically led to an up-regulation of MMP-9 in the DRG and MMP-2 in the DHSC concomitant with increased mechanical allodynia. Finally, NOV intrathecal treatment specifically abolished the induction of MMP-9 in the DRG and, MMP-9 and MMP-2 in the DHSC of CFA rats. This inhibitory effect on MMP is associated with reduced mechanical allodynia. CONCLUSIONS: This study identifies NOV as a new actor against inflammatory pain through regulation of MMPs thus uncovering NOV as an attractive candidate for therapeutic improvement in pain relief.
Assuntos
Proteínas Imediatamente Precoces/metabolismo , Inflamação/complicações , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Dor/etiologia , Dor/metabolismo , Análise de Variância , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Quimiocina CCL2/metabolismo , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Adjuvante de Freund , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Proteínas Imediatamente Precoces/genética , Inflamação/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Dor/tratamento farmacológico , Medição da Dor , Limiar da Dor/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Medula Espinal/patologia , Fatores de Tempo , Transfecção , Regulação para Cima/efeitos dos fármacosRESUMO
Cystic fibrosis (CF), due to pathogenic variants in CFTR gene, is associated with chronic infection/inflammation responsible for airway epithelium alteration and lung function decline. Modifier genes induce phenotype variability between people with CF (pwCF) carrying the same CFTR variants. Among these, the gene encoding for the amino acid transporter SLC6A14 has been associated with lung disease severity and age of primary airway infection by the bacteria Pseudomonas aeruginosa. In this study, we investigated whether the single nucleotide polymorphism (SNP) rs3788766, located within SLC6A14 promoter, is associated with lung disease severity in a large French cohort of pwCF. We also studied the consequences of this SNP on SLC6A14 promoter activity using a luciferase reporter and the role of SLC6A14 in the mechanistic target of rapamycin kinase (mTOR) signaling pathway and airway epithelial repair. We confirm that SLC6A14 rs3788766 SNP is associated with lung disease severity in pwCF (p = 0.020; n = 3,257, pancreatic insufficient, aged 6-40 years old), with the minor allele G being deleterious. In bronchial epithelial cell lines deficient for CFTR, SLC6A14 promoter activity is reduced in the presence of the rs3788766 G allele. SLC6A14 inhibition with a specific pharmacological blocker reduced 3H-arginine transport, mTOR phosphorylation, and bronchial epithelial repair rates in wound healing assays. To conclude, our study highlights that SLC6A14 genotype might affect lung disease severity of people with cystic fibrosis via mTOR and epithelial repair mechanism modulation in the lung.
RESUMO
In the coronavirus disease 2019 (COVID-19) health crisis, one major challenge is to identify the susceptibility factors of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in order to adapt the recommendations for populations, as well as to reduce the risk of COVID-19 development in the most vulnerable people, especially patients with chronic respiratory diseases such as cystic fibrosis (CF). Airway epithelial cells (AECs) play a critical role in the modulation of both immune responses and COVID-19 severity. SARS-CoV-2 infects the airway through the receptor angiotensin-converting enzyme 2, and a host protease, transmembrane serine protease 2 (TMPRSS2), plays a major role in SARS-CoV-2 infectivity. Here, we show that Pseudomonas aeruginosa increases TMPRSS2 expression, notably in primary AECs with deficiency of the ion channel CF transmembrane conductance regulator (CFTR). Further, we show that the main component of P. aeruginosa flagella, the protein flagellin, increases TMPRSS2 expression in primary AECs and Calu-3 cells, through activation of Toll-like receptor-5 and p38 MAPK. This increase is particularly seen in Calu-3 cells deficient for CFTR and is associated with an intracellular increased level of SARS-CoV-2 infection, however, with no effect on the amount of virus particles released. Considering the urgency of the COVID-19 health crisis, this result may be of clinical significance for CF patients, who are frequently infected with and colonized by P. aeruginosa during the course of CF and might develop COVID-19.
Assuntos
Fibrose Cística , Flagelina/metabolismo , Infecções por Pseudomonas/complicações , Mucosa Respiratória/virologia , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , COVID-19/complicações , Células Cultivadas , Humanos , Pseudomonas aeruginosa , Mucosa Respiratória/metabolismoRESUMO
Membrane Type 1 Matrix Metalloprotease (MT1-MMP) contributes to the invasive progression of breast cancers by degrading extracellular matrix tissues. Nucleoside diphosphate kinase, NME1/NM23-H1, has been identified as a metastasis suppressor; however, its contribution to local invasion in breast cancer is not known. Here, we report that NME1 is up-regulated in ductal carcinoma in situ (DCIS) as compared to normal breast epithelial tissues. NME1 levels drop in microinvasive and invasive components of breast tumor cells relative to synchronous DCIS foci. We find a strong anti-correlation between NME1 and plasma membrane MT1-MMP levels in the invasive components of breast tumors, particularly in aggressive histological grade III and triple-negative breast cancers. Knockout of NME1 accelerates the invasive transition of breast tumors in the intraductal xenograft model. At the mechanistic level, we find that MT1-MMP, NME1 and dynamin-2, a GTPase known to require GTP production by NME1 for its membrane fission activity in the endocytic pathway, interact in clathrin-coated vesicles at the plasma membrane. Loss of NME1 function increases MT1-MMP surface levels by inhibiting endocytic clearance. As a consequence, the ECM degradation and invasive potentials of breast cancer cells are enhanced. This study identifies the down-modulation of NME1 as a potent driver of the in situ-to invasive transition during breast cancer progression.
Assuntos
Neoplasias da Mama/metabolismo , Dinamina II/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular , Movimento Celular/fisiologia , Feminino , Humanos , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Biliary tract carcinomas are divided into intrahepatic, perihilar, distal extrahepatic cholangiocarcinomas, and gallbladder adenocarcinomas. Therapies targeting ROS1, ALK, MET, and HER2 alterations are currently evaluated in clinical trials. We assessed ROS1 and ALK translocations/amplifications as well as MET and HER2 amplifications for each tumor subtype by fluorescent in situ hybridization (FISH) and immunohistochemistry (IHC) in 73 intrahepatic, 40 perihilar bile duct, 36 distal extrahepatic cholangiocarcinomas, and 45 gallbladder adenocarcinomas (n = 194). By FISH, we detected targetable alterations in 5.2% of cases (n = 10): HER2 and MET amplifications were found in 4.1% (n = 8) and 1.0% (n = 2), respectively. The HER2-amplified cases were mostly gallbladder adenocarcinomas (n = 5). The MET- and HER2-amplified cases were all positive by IHC. Fourteen cases without MET amplification were positive by IHC, whereas HER2 over-expression was detected by IHC only in HER2-amplified cases. We detected no ALK or ROS1 translocation or amplification. Several alterations were consistent with aneuploidy: 24 cases showed only one copy of ROS1 gene, 4 cases displayed a profile of chromosomal instability, and an over-representation of centromeric alpha-satellite sequences was found in five cases. We confirm a relatively high rate of HER2 amplifications in gallbladder adenocarcinomas and the efficacy of IHC to screen these cases. Our results also suggest the value of IHC to screen MET amplification. Contrary to initial publications, ROS1 rearrangements seem to be very rare in biliary tract adenocarcinomas. We confirm a relatively high frequency of aneuploidy and chromosomal instability and reveal the over-representation of centromeric alpha-satellite sequences in intrahepatic cholangiocarcinomas.
Assuntos
Adenocarcinoma/genética , Rearranjo Gênico/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Receptor ErbB-2/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Quinase do Linfoma Anaplásico/genética , Sistema Biliar/patologia , Humanos , Hibridização in Situ Fluorescente/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-met/genéticaRESUMO
PURPOSE: The aim of this study was to investigate the association between expression of insulin-like growth factor-1 receptor (IGF1R) and its ligand, IGF-II, and disease-free survival (DFS) in patients with stage III colon cancer (CC). METHODS: In this retrospective study we included consecutive patients who underwent curative surgery for stage III CC. IGF1R and IGF-II/IGF2 status were evaluated in tumour samples by immunohistochemistry and quantitative real-time PCR (qRT-PCR). Associations of markers with DFS were analysed using Cox proportional hazards models. RESULTS: Hundred and fifty-one CC patients were included (median age, 66.6 years; female, 54.3%). Low levels of IGF1R and IGF-II protein expression were observed in 16.1% and 10.7% of the cases, respectively. No significant differences in clinicopathological characteristics between patients with tumours expressing low IGF1R or IGF-II protein levels and those with high levels were observed. A low IGF1R protein expression was found to be significantly associated with a shorter DFS (HR 3.32; 95% CI, 1.7-6.31; p = 0.0003), while no association was observed between IGF-II protein expression and DFS (HR 0.91; 95% CI, 0.28-2.96; p = 0.87). In a multivariate analysis, IGF1R protein status remained an independent prognostic factor for DFS (HR 2.73; 95% CI, 1.40-5.31; p = 0.003). Furthermore, we found that neither IGF1R nor IGF2 mRNA expression levels as measured by qRT-PCR correlated with the respective protein expression levels as assessed by immunohistochemistry. Neither of the mRNA expression levels was significantly associated with DFS. CONCLUSIONS: From our data we conclude that low IGF1R protein expression represents a poor prognostic biomarker in stage III colon cancer.
Assuntos
Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro/genética , Receptor IGF Tipo 1/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/biossíntese , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
BACKGROUND/AIM: The aim of this study was to assess the incidence of MSI in a large series of human hepatocellular carcinomas (HCC) with various etiologies. MATERIALS AND METHODS: The MSI status was determined by polymerase chain reaction (PCR) using 5 mononucleotide and 13 CAn dinucleotide repeats. RESULTS: None of the 122 HCC samples displayed an MSI-High phenotype, as defined by the presence of alterations at more than 30% of the microsatellite markers analyzed. Yet, limited microsatellite instability consisting in the insertion or deletion of a few repeat motifs was detected in 32 tumor samples (26.2%), regardless of the etiology of the underlying liver disease. MSI tended to be higher in patients with cirrhosis (p=0.051), possibly reflecting an impact of the inflammatory context in this process. CONCLUSION: Based on a large series of HCC with various etiologies, our study allowed us to definitely conclude that MSI is not a hallmark of HCC.
Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/patologia , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Adulto JovemRESUMO
BACKGROUND: While single nucleotide polymorphisms (SNP) in genes involved in DNA repair or drug metabolism have been shown to influence survival of metastatic colon cancer patients treated with FOLFOX, data on adjuvant setting are scarce. METHODS: This study evaluated the correlation between disease-free survival (DFS) of 210 unselected stage III colon cancer patients receiving FOLFOX chemotherapy, and ERCC1-118 (rs11615, c.354T>C), XRCC1-399 (rs25487, c.1196G>A) and GSTP1-105 (rs1695, c.313A>G) polymorphisms. SNP were determined on tumor DNA using a PCR-based RFLP technique. RESULTS: In univariate analysis, a trend towards longer DFS was observed for ERCC1 (C/T + T/T) versus (C/C) (HR=2.29; p=0.06), and XRCC1 (A/A) versus (G/G + G/A) (HR=1.61; p=0.16), but not for GSTP1 genotypes; a statistically significant p value was obtained when combining ERCC1 and XRCC1 favorable genotypes (0 versus ≥ 1 favorable genotypes, HR=2.42; p=0.02). After adjustment on tumor stage, lymph node ratio and differentiation grade, multivariate analysis showed that combining ERCC1 and XRCC1 genotypes gave a p value slightly above the threshold for statistical significance (HR=2.03; p=0.06), which was lower than for tumor stage, lymph node ratio or differentiation grade. CONCLUSION: The association of ERCC1 and XRCC1 polymorphisms may influence the prognosis of stage III colon cancer patients treated with FOLFOX adjuvant chemotherapy. Yet, these findings need to be confirmed in independent prospective studies.
RESUMO
OBJECTIVE: Evidence points to a founder of the multifunctional CCN family, NOV/CCN3, as a circulating molecule involved in cardiac development, vascular homeostasis and inflammation. No data are available on the relationship between plasma NOV/CCN3 levels and cardiovascular risk factors in humans. This study investigated the possible relationship between plasma NOV levels and cardiovascular risk factors in humans. METHODS: NOV levels were measured in the plasma from 594 adults with a hyperlipidemia history and/or with lipid-lowering therapy and/or a body mass index (BMI) >30 kg/m(2). Correlations were measured between NOV plasma levels and various parameters, including BMI, fat mass, and plasma triglycerides, cholesterol, glucose, and C-reactive protein. NOV expression was also evaluated in adipose tissue from obese patients and rodents and in primary cultures of adipocytes and macrophages. RESULTS: After full multivariate adjustment, we detected a strong positive correlation between plasma NOV and BMI (râ=â0.36 p<0.0001) and fat mass (râ=â0.33 p<0.0005). According to quintiles, this relationship appeared to be linear. NOV levels were also positively correlated with C-reactive protein but not with total cholesterol, LDL-C or blood glucose. In patients with drastic weight loss induced by Roux-en-Y bariatric surgery, circulating NOV levels decreased by 28% (p<0.02) and 48% (p<0.0001) after 3 and 6 months, respectively, following surgery. In adipose tissue from obese patients, and in human primary cultures NOV protein was detected in adipocytes and macrophages. In mice fed a high fat diet NOV plasma levels and its expression in adipose tissue were also significantly increased compared to controls fed a standard diet. CONCLUSION: Our results strongly suggest that in obese humans and mice plasma NOV levels positively correlated with NOV expression in adipose tissue, and support a possible contribution of NOV to obesity-related inflammation.