Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
medRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38633808

RESUMO

Background: Current risk stratification strategies for heart failure (HF) risk require either specific blood-based biomarkers or comprehensive clinical evaluation. In this study, we evaluated the use of artificial intelligence (AI) applied to images of electrocardiograms (ECGs) to predict HF risk. Methods: Across multinational longitudinal cohorts in the integrated Yale New Haven Health System (YNHHS) and in population-based UK Biobank (UKB) and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), we identified individuals without HF at baseline. Incident HF was defined based on the first occurrence of an HF hospitalization. We evaluated an AI-ECG model that defines the cross-sectional probability of left ventricular dysfunction from a single image of a 12-lead ECG and its association with incident HF. We accounted for the competing risk of death using the Fine-Gray subdistribution model and evaluated the discrimination using Harrel's c-statistic. The pooled cohort equations to prevent HF (PCP-HF) were used as a comparator for estimating incident HF risk. Results: Among 231,285 individuals at YNHHS, 4472 had a primary HF hospitalization over 4.5 years (IQR 2.5-6.6) of follow-up. In UKB and ELSA-Brasil, among 42,741 and 13,454 people, 46 and 31 developed HF over a follow-up of 3.1 (2.1-4.5) and 4.2 (3.7-4.5) years, respectively. A positive AI-ECG screen portended a 4-fold higher risk of incident HF among YNHHS patients (age-, sex-adjusted HR [aHR] 3.88 [95% CI, 3.63-4.14]). In UKB and ELSA-Brasil, a positive-screen ECG portended 13- and 24-fold higher hazard of incident HF, respectively (aHR: UKBB, 12.85 [6.87-24.02]; ELSA-Brasil, 23.50 [11.09-49.81]). The association was consistent after accounting for comorbidities and the competing risk of death. Higher model output probabilities were progressively associated with a higher risk for HF. The model's discrimination for incident HF was 0.718 in YNHHS, 0.769 in UKB, and 0.810 in ELSA-Brasil. Across cohorts, incorporating model probability with PCP-HF yielded a significant improvement in discrimination over PCP-HF alone. Conclusions: An AI model applied to images of 12-lead ECGs can identify those at elevated risk of HF across multinational cohorts. As a digital biomarker of HF risk that requires just an ECG image, this AI-ECG approach can enable scalable and efficient screening for HF risk.

2.
medRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38562867

RESUMO

Introduction: Portable devices capable of electrocardiogram (ECG) acquisition have the potential to enhance structural heart disease (SHD) management by enabling early detection through artificial intelligence-ECG (AI-ECG) algorithms. However, the performance of these AI algorithms for identifying SHD in a real-world screening setting is unknown. To address this gap, we aim to evaluate the validity of our wearable-adapted AI algorithm, which has been previously developed and validated for detecting SHD from single-lead portable ECGs in patients undergoing routine echocardiograms in the Yale New Haven Hospital (YNHH). Research Methods and Analysis: This is the protocol for a cross-sectional study in the echocardiographic laboratories of YNHH. The study will enroll 585 patients referred for outpatient transthoracic echocardiogram (TTE) as part of their routine clinical care. Patients expressing interest in participating in the study will undergo a screening interview, followed by enrollment upon meeting eligibility criteria and providing informed consent. During their routine visit, patients will undergo a 1-lead ECG with two devices - one with an Apple Watch and the second with another portable 1-lead ECG device. With participant consent, these 1-lead ECG data will be linked to participant demographic and clinical data recorded in the YNHH electronic health records (EHR). The study will assess the performance of the AI-ECG algorithm in identifying SHD, including left ventricular systolic dysfunction (LVSD), valvular disease and severe left ventricular hypertrophy (LVH), by comparing the algorithm's results with data obtained from TTE, which is the established gold standard for diagnosing SHD. Ethics and Dissemination: All patient EHR data required for assessing eligibility and conducting the AI-ECG will be accessed through secure servers approved for protected health information. Data will be maintained on secure, encrypted servers for a minimum of five years after the publication of our findings in a peer-reviewed journal, and any unanticipated adverse events or risks will be reported by the principal investigator to the Yale Institutional Review Board, which has reviewed and approved this protocol (Protocol Number: 2000035532).

3.
medRxiv ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39417095

RESUMO

Background: Identifying structural heart diseases (SHDs) early can change the course of the disease, but their diagnosis requires cardiac imaging, which is limited in accessibility. Objective: To leverage 12-lead ECG images for automated detection and prediction of multiple SHDs using a novel deep learning model. Methods: We developed a series of convolutional neural network models for detecting a range of individual SHDs from images of ECGs with SHDs defined by transthoracic echocardiograms (TTEs) performed within 30 days of the ECG at the Yale New Haven Hospital (YNHH). SHDs were defined based on TTEs with LV ejection fraction <40%, moderate-to-severe left-sided valvular disease (aortic/mitral stenosis or regurgitation), or severe left ventricular hypertrophy (IVSd > 1.5cm and diastolic dysfunction). We developed an ensemble XGBoost model, PRESENT-SHD, as a composite screen across all SHDs. We validated PRESENT-SHD at 4 US hospitals and a prospective population-based cohort study, the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), with concurrent protocolized ECGs and TTEs. We also used PRESENT-SHD for risk stratification of new-onset SHD or heart failure (HF) in clinical cohorts and the population-based UK Biobank (UKB). Results: The models were developed using 261,228 ECGs from 93,693 YNHH patients and evaluated on a single ECG from 11,023 individuals at YNHH (19% with SHD), 44,591 across external hospitals (20-27% with SHD), and 3,014 in the ELSA-Brasil (3% with SHD). In the held-out test set, PRESENT-SHD demonstrated an AUROC of 0.886 (0.877-894), sensitivity of 89%, and specificity of 66%. At hospital-based sites, PRESENT-SHD had AUROCs ranging from 0.854-0.900, with sensitivities and specificities of 93-96% and 51-56%, respectively. The model generalized well to ELSA-Brasil (AUROC, 0.853 [0.811-0.897], sensitivity 88%, specificity 62%). PRESENT-SHD performance was consistent across demographic subgroups. A positive PRESENT-SHD screen portended a 2- to 4-fold higher risk of new-onset SHD/HF, independent of demographics, comorbidities, and the competing risk of death across clinical sites and UKB, with high predictive discrimination. Conclusion: We developed and validated PRESENT-SHD, an AI-ECG tool identifying a range of SHD using images of 12-lead ECGs, representing a robust, scalable, and accessible modality for automated SHD screening and risk stratification.

4.
medRxiv ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38854022

RESUMO

Importance: Despite the availability of disease-modifying therapies, scalable strategies for heart failure (HF) risk stratification remain elusive. Portable devices capable of recording single-lead electrocardiograms (ECGs) can enable large-scale community-based risk assessment. Objective: To evaluate an artificial intelligence (AI) algorithm to predict HF risk from noisy single-lead ECGs. Design: Multicohort study. Setting: Retrospective cohort of individuals with outpatient ECGs in the integrated Yale New Haven Health System (YNHHS) and prospective population-based cohorts of UK Biobank (UKB) and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Participants: Individuals without HF at baseline. Exposures: AI-ECG-defined risk of left ventricular systolic dysfunction (LVSD). Main Outcomes and Measures: Among individuals with ECGs, we isolated lead I ECGs and deployed a noise-adapted AI-ECG model trained to identify LVSD. We evaluated the association of the model probability with new-onset HF, defined as the first HF hospitalization. We compared the discrimination of AI-ECG against the pooled cohort equations to prevent HF (PCP-HF) score for new-onset HF using Harrel's C-statistic, integrated discrimination improvement (IDI), and net reclassification improvement (NRI). Results: There were 194,340 YNHHS patients (age 56 years [IQR, 41-69], 112,082 women [58%]), 42,741 UKB participants (65 years [59-71], 21,795 women [52%]), and 13,454 ELSA-Brasil participants (56 years [41-69], 7,348 women [55%]) with baseline ECGs. A total of 3,929 developed HF in YNHHS over 4.5 years (2.6-6.6), 46 in UKB over 3.1 years (2.1-4.5), and 31 in ELSA-Brasil over 4.2 years (3.7-4.5). A positive AI-ECG screen was associated with a 3- to 7-fold higher risk for HF, and each 0.1 increment in the model probability portended a 27-65% higher hazard across cohorts, independent of age, sex, comorbidities, and competing risk of death. AI-ECG's discrimination for new-onset HF was 0.725 in YNHHS, 0.792 in UKB, and 0.833 in ELSA-Brasil. Across cohorts, incorporating AI-ECG predictions in addition to PCP-HF resulted in improved Harrel's C-statistic (Δ=0.112-0.114), with an IDI of 0.078-0.238 and an NRI of 20.1%-48.8% for AI-ECG vs. PCP-HF. Conclusions and Relevance: Across multinational cohorts, a noise-adapted AI model with lead I ECGs as the sole input defined HF risk, representing a scalable portable and wearable device-based HF risk-stratification strategy.

5.
medRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370787

RESUMO

Background: SGLT2 inhibitors (SGLT2is) and GLP-1 receptor agonists (GLP1-RAs) reduce major adverse cardiovascular events (MACE) in patients with type 2 diabetes mellitus (T2DM). However, their effectiveness relative to each other and other second-line antihyperglycemic agents is unknown, without any major ongoing head-to-head trials. Methods: Across the LEGEND-T2DM network, we included ten federated international data sources, spanning 1992-2021. We identified 1,492,855 patients with T2DM and established cardiovascular disease (CVD) on metformin monotherapy who initiated one of four second-line agents (SGLT2is, GLP1-RAs, dipeptidyl peptidase 4 inhibitor [DPP4is], sulfonylureas [SUs]). We used large-scale propensity score models to conduct an active comparator, target trial emulation for pairwise comparisons. After evaluating empirical equipoise and population generalizability, we fit on-treatment Cox proportional hazard models for 3-point MACE (myocardial infarction, stroke, death) and 4-point MACE (3-point MACE + heart failure hospitalization) risk, and combined hazard ratio (HR) estimates in a random-effects meta-analysis. Findings: Across cohorts, 16·4%, 8·3%, 27·7%, and 47·6% of individuals with T2DM initiated SGLT2is, GLP1-RAs, DPP4is, and SUs, respectively. Over 5·2 million patient-years of follow-up and 489 million patient-days of time at-risk, there were 25,982 3-point MACE and 41,447 4-point MACE events. SGLT2is and GLP1-RAs were associated with a lower risk for 3-point MACE compared with DPP4is (HR 0·89 [95% CI, 0·79-1·00] and 0·83 [0·70-0·98]), and SUs (HR 0·76 [0·65-0·89] and 0·71 [0·59-0·86]). DPP4is were associated with a lower 3-point MACE risk versus SUs (HR 0·87 [0·79-0·95]). The pattern was consistent for 4-point MACE for the comparisons above. There were no significant differences between SGLT2is and GLP1-RAs for 3-point or 4-point MACE (HR 1·06 [0·96-1·17] and 1·05 [0·97-1·13]). Interpretation: In patients with T2DM and established CVD, we found comparable cardiovascular risk reduction with SGLT2is and GLP1-RAs, with both agents more effective than DPP4is, which in turn were more effective than SUs. These findings suggest that the use of GLP1-RAs and SGLT2is should be prioritized as second-line agents in those with established CVD. Funding: National Institutes of Health, United States Department of Veterans Affairs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA