Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(17): 3653-3665, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38623629

RESUMO

Deformable colloids and macromolecules adsorb at interfaces as they decrease the interfacial energy between the two media. The deformability, or softness, of these particles plays a pivotal role in the properties of the interface. In this study, we employ a comprehensive in situ approach, combining neutron reflectometry with molecular dynamics simulations, to thoroughly examine the profound influence of softness on the structure of microgel Langmuir monolayers under compression. Lateral compression of both hard and soft microgel particle monolayers induces substantial structural alterations, leading to an amplified protrusion of the microgels into the aqueous phase. However, a critical distinction emerges: hard microgels are pushed away from the interface, in stark contrast to the soft ones, which remain firmly anchored to it. Concurrently, on the air-exposed side of the monolayer, lateral compression induces a flattening of the surface of the hard monolayer. This phenomenon is not observed for the soft particles as the monolayer is already extremely flat even in the absence of compression. These findings significantly advance our understanding of the key role of softness on both the equilibrium phase behavior of the monolayer and its effect when soft colloids are used as stabilizers of responsive interfaces and emulsions.

2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34508008

RESUMO

Thermoresponsive microgels are one of the most investigated types of soft colloids, thanks to their ability to undergo a Volume Phase Transition (VPT) close to ambient temperature. However, this fundamental phenomenon still lacks a detailed microscopic understanding, particularly regarding the presence and the role of charges in the deswelling process. This is particularly important for the widely used poly(N-isopropylacrylamide)-based microgels, where the constituent monomers are neutral but charged groups arise due to the initiator molecules used in the synthesis. Here, we address this point combining experiments with state-of-the-art simulations to show that the microgel collapse does not happen in a homogeneous fashion, but through a two-step mechanism, entirely attributable to electrostatic effects. The signature of this phenomenon is the emergence of a minimum in the ratio between gyration and hydrodynamic radii at the VPT. Thanks to simulations of microgels with different cross-linker concentrations, charge contents, and charge distributions, we provide evidence that peripheral charges arising from the synthesis are responsible for this behavior and we further build a universal master curve able to predict the two-step deswelling. Our results have direct relevance on fundamental soft condensed matter science and on applications where microgels are involved, ranging from materials to biomedical technologies.

3.
Phys Rev Lett ; 131(25): 258202, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181345

RESUMO

In situ interfacial rheology and numerical simulations are used to investigate microgel monolayers in a wide range of packing fractions, ζ_{2D}. The heterogeneous particle compressibility determines two flow regimes characterized by distinct master curves. To mimic the microgel architecture and reproduce experiments, an interaction potential combining a soft shoulder with the Hertzian model is introduced. In contrast to bulk conditions, the elastic moduli vary nonmonotonically with ζ_{2D} at the interface, confirming long-sought predictions of reentrant behavior for Hertzian-like systems.

4.
Mol Pharm ; 20(5): 2738-2753, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37067466

RESUMO

Monoclonal antibody solutions are set to become a major therapeutic tool in the years to come, capable of targeting various diseases by clever design of their antigen binding site. However, the formulation of stable solutions suitable for patient self-administration typically presents challenges, as a result of the increase in viscosity that often occurs at high concentrations. Here, we establish a link between the microscopic molecular details and the resulting properties of an antibody solution through the characterization of clusters, which arise in the presence of self-associating antibodies. In particular, we find that experimental small-angle X-ray scattering data can be interpreted by means of analytical models previously exploited for the study of polymeric and colloidal objects, based on the presence of such clusters. The latter are determined by theoretical calculations and supported by computer simulations of a coarse-grained minimal model, in which antibodies are treated as Y-shaped colloidal molecules and attractive domains are designed as patches. Using the theoretically predicted cluster size distributions, we are able to describe the experimental structure factors over a wide range of concentration and salt conditions. We thus provide microscopic evidence for the well-established fact that the concentration-dependent increase in viscosity is originated by the presence of clusters. Our findings bring new insights on the self-assembly of monoclonal antibodies, which can be exploited for guiding the formulation of stable and effective antibody solutions.


Assuntos
Anticorpos Monoclonais , Cloreto de Sódio , Humanos , Anticorpos Monoclonais/química , Simulação por Computador , Viscosidade , Soluções
5.
J Chem Phys ; 157(15): 154503, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36272802

RESUMO

The assembly of colloidal cubic diamond is a challenging process since the shape and interaction parameters and the thermodynamic conditions where this structure is stable are elusive. The simultaneous use of shape-anisotropic particles and strong directional interactions has proven to be a successful path to exclusively nucleate this structure. Here, using molecular dynamics simulations, we explore in detail the conditions where the nucleation of cubic diamond from tetrahedral building blocks is favored. In particular, we focus on the effect of depletion and DNA-mediated interactions to form and stabilize this cubic diamond crystal. We find that a particular balance between the strength and the range of the depletion interactions enhances the self-assembly of stable cubic diamond, leading to a narrow region where this structure is nucleated. Moreover, we determine that stronger short-range depletion attractions may arrest the system, leading to the formation of percolating diamond networks or fully disordered gel structures. Accordingly, the internal arrangements of these structures exhibit a distinct variation in terms of fractal dimension and the presence of six-membered rings that increasingly acquire internal strain as the arrest gets more pronounced. With these results, we provide a clear route for the self-assembly of cubic colloidal diamond, toward the realization of crystals with superior photonic properties.


Assuntos
Coloides , Diamante , Coloides/química , Termodinâmica , Anisotropia , DNA/química
6.
J Chem Phys ; 154(15): 154901, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33887924

RESUMO

We report extensive numerical simulations of different models of 2D polymer rings with internal elasticity. We monitor the dynamical behavior of the rings as a function of the packing fraction to address the effects of particle deformation on the collective response of the system. In particular, we compare three different models: (i) a recently investigated model [N. Gnan and E. Zaccarelli, Nat. Phys. 15, 683 (2019)] where an inner Hertzian field providing the internal elasticity acts on the monomers of the ring, (ii) the same model where the effect of such a field on the center of mass is balanced by opposite forces, and (iii) a semi-flexible model where an angular potential between adjacent monomers induces strong particle deformations. By analyzing the dynamics of the three models, we find that in all cases, there exists a direct link between the system fragility and particle asphericity. Among the three, only the first model displays anomalous dynamics in the form of a super-diffusive behavior of the mean-squared displacement and of a compressed exponential relaxation of the density auto-correlation function. We show that this is due to the combination of internal elasticity and the out-of-equilibrium force self-generated by each ring, both of which are necessary ingredients to induce such a peculiar behavior often observed in experiments of colloidal gels. These findings reinforce the role of particle deformation, connected to internal elasticity, in driving the dynamical response of dense soft particles.

8.
Soft Matter ; 15(40): 8113-8128, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31589214

RESUMO

Recent progress has been made in the numerical modelling of neutral microgel particles with a realistic, disordered structure. In this work we extend this approach to the case of co-polymerised microgels where a thermoresponsive polymer is mixed with acidic groups. We compare the cases where counterions directly interact with microgel charges or are modelled implicitly through a Debye-Hückel description. We do so by performing extensive numerical simulations of single microgels across the volume phase transition (VPT) varying the temperature and the fraction of charged monomers. We find that the presence of charges considerably alters the microgel structure, quantified by the monomer density profiles and by the form factors of the microgels, particularly close to the VPT. We observe significant deviations between the implicit and explicit models, with the latter comparing more favourably to available experiments. In particular, we observe a shift of the VPT temperature to larger values as the amount of charged monomers increases. We also find that below the VPT the microgel-counterion complex is almost neutral, while it develops a net charge above the VPT. Interestingly, under these conditions the collapsed microgel still retains a large amount of counterions inside its structure. Since these interesting features cannot be captured by the implicit model, our results show that it is crucial to explicitly include the counterions in order to realistically model ionic thermoresponsive microgels.

9.
Nanoscale ; 16(9): 4724-4736, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38289471

RESUMO

The intricate interplay between colloidal particle shape and precisely engineered interaction potentials has paved the way for the discovery of unprecedented crystal structures in both two and three dimensions. Here, we make use of anisotropic triblock colloidal particles composed of two distinct materials. The resulting surface charge heterogeneity can be exploited to generate regioselective depletion interactions and directional bonding. Using extensive molecular dynamics simulations and a dimensionality reduction analysis approach, we map out state diagrams for the self-assembly of such colloids as a function of their aspect ratio and for varying depletant features in a quasi two-dimensional set-up. We observe the formation of a wide variety of crystal structures such as a herringbone, brick-wall, tilted brick-wall, and (tilted) ladder-like structures. More specifically, we determine the optimal parameters to enhance crystallization, and investigate the nucleation process. Additionally, we explore the potential of using crystalline monolayers as templates for deposition, thereby creating complex three-dimensional structures that hold promise for future applications.

10.
J Colloid Interface Sci ; 629(Pt A): 322-333, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36081211

RESUMO

HYPOTHESIS: Colloidal molecules with anisotropic shapes and interactions are powerful model systems for deciphering the behavior of real molecules and building units for creating materials with designed properties. While many strategies for their assembly have been developed, they typically yield a broad distribution or are limited to a specific type. We hypothesize that the shape and relative sizes of colloidal particles can be exploited to efficiently direct their assembly into colloidal molecules of desired valence. EXPERIMENTS: We exploit electrostatic self-assembly of negatively charged spheres made from either polystyrene or silica onto positively charged hematite cubes. We thoroughly analyze the role of the shape and size ratio of particles on the cluster size and yield of colloidal molecules. FINDINGS: Using a combination of experiments and simulations, we demonstrate that cubic particle shape is crucial to generate high yields of distinct colloidal molecules over a wide variety of size ratios. We find that electrostatic repulsion between the satellite spheres is important to leverage the templating effect of the cubes, leading the spheres to preferentially assemble on the facets rather than the edges and corners of the cube. The sixfold symmetry of cubes favors the assembly of molecules with six, four, and two satellite spheres at appropriate size ratios and interaction strength. Furthermore, we reveal that our protocol is not affected by the specific choice of the material of the colloidal particles. Finally, we show that the permanent magnetic dipole moment of the hematite cubes can be utilized to separate colloidal molecules from non-assembled satellite particles. Our simple and effective strategy might be extended to other templating particle shapes, thereby greatly expanding the library of colloidal molecules that can be achieved with high yield and purity.


Assuntos
Coloides , Poliestirenos , Compostos Férricos , Dióxido de Silício
11.
Adv Sci (Weinh) ; 10(28): e2303404, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541434

RESUMO

The encapsulation of a rigid core within a soft polymeric shell allows obtaining composite colloidal particles that retain functional properties, e.g., optical or mechanical. At the same time, it favors their adsorption at fluid interfaces with a tunable interaction potential to realize tailored two-dimensional (2D) materials. Although they have already been employed for 2D assembly, the conformation of single particles, which is essential to define the monolayer properties, has been largely inferred via indirect or ex situ techniques. Here, by means of in situ atomic force microscopy experiments, the authors uncover the interfacial morphology of hard-core soft-shell microgels, integrating the data with numerical simulations to elucidate the role of the core properties, of the shell thicknesses, and that of the grafting density. They identify that the hard core can influence the conformation of the polymer shells. In particular, for the case of small shell thickness, low grafting density, or poor core affinity for water, the core protrudes more into the organic phase, and the authors observe a decrease in-plane stretching of the network at the interface. By rationalizing their general wetting behavior, such composite particles can be designed to exhibit specific inter-particle interactions of importance both for the stabilization of interfaces and for the fabrication of 2D materials with tailored functional properties.

12.
ACS Nano ; 17(13): 12234-12246, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37363931

RESUMO

Colloidal molecules are ideal model systems for mimicking real molecules and can serve as versatile building blocks for the bottom-up self-assembly of flexible and smart materials. While most colloidal molecules are rigid objects, the development of colloidal joints has made it possible to endow them with conformational flexibility. However, their unrestricted range of motion does not capture the limited movement and bond directionality that is instead typical of real molecules. In this work, we create flexible colloidal molecules with an in situ controllable motion range and bond directionality by assembling spherical particles onto cubes functionalized with complementary surface-mobile DNA. By varying the sphere-to-cube size ratio, we obtain colloidal molecules with different coordination numbers and find that they feature a constrained range of motion above a critical size ratio. Using theory and simulations, we show that the particle shape together with the multivalent bonds creates an effective free-energy landscape for the motion of the sphere on the surface of the cube. We quantify the confinement of the spheres on the surface of the cube and the probability to change facet. We find that temperature can be used as an extra control parameter to switch in situ between full and constrained flexibility. These flexible colloidal molecules with a temperature switching motion range can be used to investigate the effect of directional yet flexible bonds in determining their self-assembly and phase behavior, and may be employed as constructional units in microrobotics and smart materials.

13.
Nat Commun ; 14(1): 7896, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036561

RESUMO

It is commonly believed that the most efficient way to pack a finite number of equal-sized spheres is by arranging them tightly in a cluster. However, mathematicians have conjectured that a linear arrangement may actually result in the densest packing. Here, our combined experimental and simulation study provides a physical realization of the finite sphere packing problem by studying arrangements of colloids in a flaccid lipid vesicle. We map out a state diagram displaying linear, planar, and cluster conformations of spheres, as well as bistable states which alternate between cluster-plate and plate-linear conformations due to membrane fluctuations. Finally, by systematically analyzing truncated polyhedral packings, we identify clusters of 56 ≤ N ≤ 70 number of spheres, excluding N = 57 and 63, that pack more efficiently than linear arrangements.

14.
ACS Nano ; 17(14): 13648-13658, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37406164

RESUMO

The manipulation of nano-objects through heating is an effective strategy for inducing structural modifications and therefore changing the optoelectronic properties of semiconducting materials. Despite its potential, the underlying mechanism of the structural transformations remains elusive, largely due to the challenges associated with their in situ observations. To address these issues, we synthesize temperature-sensitive CsPbBr3 perovskite nanoplatelets and investigate their structural evolution at the nanoscale using in situ heating transmission electron microscopy. We observe the morphological changes that start from the self-assembly of the nanoplatelets into ribbons on a substrate. We identify several paths of merging nanoplates within ribbons that ultimately lead to the formation of nanosheets dispersed randomly on the substrate. These observations are supported by molecular dynamics simulations. We correlate the various paths for merging to the random orientation of the initial ribbons along with the ligand mobility (especially from the edges of the nanoplatelets). This leads to the preferential growth of individual nanosheets and the merging of neighboring ones. These processes enable the creation of structures with tunable emission, ranging from blue to green, all from a single material. Our real-time observations of the transformation of perovskite 2D nanocrystals reveal a route to achieve large-area nanosheets by controlling the initial orientation of the self-assembled objects with potential for large-scale applications.

15.
ACS Nano ; 17(8): 7257-7271, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37053566

RESUMO

Hollow microgels are fascinating model systems at the crossover between polymer vesicles, emulsions, and colloids as they deform, interpenetrate, and eventually shrink at higher volume fraction or when subjected to an external stress. Here, we introduce a system consisting of microgels with a micrometer-sized cavity enabling a straightforward characterization in situ using fluorescence microscopy techniques. Similarly to elastic capsules, these systems are found to reversibly buckle above a critical osmotic pressure, conversely to smaller hollow microgels, which were previously reported to deswell at high volume fraction. Simulations performed on monomer-resolved in silico hollow microgels confirm the buckling transition and show that the presented microgels can be described with a thin shell model theory. When brought to an interface, these microgels, that we define as microgel capsules, strongly deform and we thus propose to utilize them to locally probe interfacial properties within a theoretical framework adapted from the Johnson-Kendall-Roberts (JKR) theory. Besides their capability to sense their environment and to address fundamental questions on the elasticity and permeability of microgel systems, microgel capsules can be further envisioned as model systems mimicking anisotropic responsive biological systems such as red blood and epithelial cells thanks to the possibility offered by microgels to be synthesized with custom-designed properties.

16.
Nat Commun ; 13(1): 3744, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768399

RESUMO

The structural characterization of microgels at interfaces is fundamental to understand both their 2D phase behavior and their role as stabilizers that enable emulsions to be broken on demand. However, this characterization is usually limited by available experimental techniques, which do not allow a direct investigation at interfaces. To overcome this difficulty, here we employ neutron reflectometry, which allows us to probe the structure and responsiveness of the microgels in-situ at the air-water interface. We investigate two types of microgels with different cross-link density, thus having different softness and deformability, both below and above their volume phase transition temperature, by combining experiments with computer simulations of in silico synthesized microgels. We find that temperature only affects the portion of microgels in water, while the strongest effect of the microgels softness is observed in their ability to protrude into the air. In particular, standard microgels have an apparent contact angle of few degrees, while ultra-low cross-linked microgels form a flat polymeric layer with zero contact angle. Altogether, this study provides an in-depth microscopic description of how different microgel architectures affect their arrangements at interfaces, and will be the foundation for a better understanding of their phase behavior and assembly.

17.
Macromolecules ; 55(5): 1834-1843, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35283539

RESUMO

We combine small-angle scattering experiments and simulations to investigate the internal structure and interactions of composite poly(N-isopropylacrylamide)-poly(ethylene glycol) (PNIPAM-PEG) microgels. At low temperatures the experimentally determined form factors and the simulated density profiles indicate a loose internal particle structure with an extended corona that can be modeled as a starlike object. With increasing temperature across the volumetric phase transition, the form factor develops an inflection that, using simulations, is interpreted as arising from a conformation in which PEG chains are incorporated in the interior of the PNIPAM network. This gives rise to a peculiar density profile characterized by two dense, separated regions, at odds with configurations in which the PEG chains reside on the surface of the PNIPAM core. The conformation of the PEG chains also have profound effects on the interparticle interactions: Although chains on the surface reduce the solvophobic attraction typically experienced by PNIPAM particles at high temperatures, PEG chains inside the PNIPAM network shift the onset of attractive interaction at even lower temperatures. Our results show that by tuning the morphology of the composite microgels, we can qualitatively change both their structure and their mutual interactions, opening the way to explore new collective behaviors of these objects.

18.
ACS Nano ; 15(8): 13105-13117, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34328717

RESUMO

Monolayers of soft colloidal particles confined at fluid interfaces are at the core of a broad range of technological processes, from the stabilization of responsive foams and emulsions to advanced lithographic techniques. However, establishing a fundamental relation between their internal architecture, which is controlled during synthesis, and their structural and mechanical properties upon interfacial confinement remains an elusive task. To address this open issue, which defines the monolayer's properties, we synthesize core-shell microgels, whose soft core can be chemically degraded in a controlled fashion. This strategy allows us to obtain a series of particles ranging from analogues of standard batch-synthesized microgels to completely hollow ones after total core removal. Combined experimental and numerical results show that our hollow particles have a thin and deformable shell, leading to a temperature-responsive collapse of the internal cavity and a complete flattening after adsorption at a fluid interface. Mechanical characterization shows that a critical degree of core removal is required to obtain soft disk-like particles at an oil-water interface, which present a distinct response to compression. At low packing fractions, the mechanical response of the monolayer is dominated by the outer polymer chains forming a corona surrounding the particles within the interfacial plane, regardless of the presence of a core. By contrast, at high compression, the absence of a core enables the particles to deform in the direction orthogonal to the interface and to be continuously compressed without altering the monolayer structure. These findings show how fine, single-particle architectural control during synthesis can be engineered to determine the interfacial behavior of microgels, enabling one to link particle conformation with the resulting material properties.

19.
J Phys Condens Matter ; 33(8): 084001, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33105117

RESUMO

Ionic microgel particles are intriguing systems in which the properties of thermo-responsive polymeric colloids are enriched by the presence of charged groups. In order to rationalize their properties and predict the behaviour of microgel suspensions, it is necessary to develop a coarse-graining strategy that starts from the accurate modelling of single particles. Here, we provide a numerical advancement of a recently-introduced model for charged co-polymerized microgels by improving the treatment of ionic groups in the polymer network. We investigate the thermoresponsive properties of the particles, in particular their swelling behaviour and structure, finding that, when charged groups are considered to be hydrophilic at all temperatures, highly charged microgels do not achieve a fully collapsed state, in favorable comparison to experiments. In addition, we explicitly include the solvent in the description and put forward a mapping between the solvophobic potential in the absence of the solvent and the monomer-solvent interactions in its presence, which is found to work very accurately for any charge fraction of the microgel. Our work paves the way for comparing single-particle properties and swelling behaviour of ionic microgels to experiments and to tackle the study of these charged soft particles at a liquid-liquid interface.

20.
ACS Nano ; 13(4): 4548-4559, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30865829

RESUMO

Soft particles display highly versatile properties with respect to hard colloids and even more so at fluid-fluid interfaces. In particular, microgels, consisting of a cross-linked polymer network, are able to deform and flatten upon adsorption at the interface due to the balance between surface tension and internal elasticity. Despite the existence of experimental results, a detailed theoretical understanding of this phenomenon is still lacking due to the absence of appropriate microscopic models. In this work, we propose an advanced modeling of microgels at a flat water/oil interface. The model builds on a realistic description of the internal polymeric architecture and single-particle properties of the microgel and is able to reproduce its experimentally observed shape at the interface. Complementing molecular dynamics simulations with in situ cryo-electron microscopy experiments and atomic force microscopy imaging after Langmuir-Blodgett deposition, we compare the morphology of the microgels for different values of the cross-linking ratios. Our model allows for a systematic microscopic investigation of soft particles at fluid interfaces, which is essential to develop predictive power for the use of microgels in a broad range of applications, including the stabilization of smart emulsions and the versatile patterning of surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA