Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Chemistry ; 30(13): e202303867, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38214467

RESUMO

Several ortho-carboranes bearing a phenoxy or a phenylamino group in the B9 position were prepared employing various protection and deprotection strategies. Following established protocols, dendritic compounds were synthesized from a hexachlorocyclotriphosphazene or thiophosphoryl chloride core, and possible anchoring options for the B9-substituted ortho-carboranes were investigated experimentally and theoretically (DFT). Furthermore, 1- or 1,2-phosphanyl-substituted carborane derivatives were obtained. The resulting diethyl-, diisopropyl-, di-tert-butyl-, diphenyl- or diethoxyphosphines bearing a tunable ortho-carborane moiety are intriguing ligands for future applications in homogeneous catalysis or the medicinal sector.

2.
Chemistry ; 30(13): e202400456, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372387

RESUMO

Invited for the cover of this issue are the groups and colleagues of Anne-Marie Caminade at the CNRS and University of Toulouse, Evamarie Hey-Hawkins at Leipzig University, and Agustí Lledós from the Autonomous University of Barcelona. The image depicts birds crowned by a carborane competing for access to food, to illustrate the steric hindrance encountered when grafting carboranes to dendrimers (artwork by Dr. Christoph Selg). Read the full text of the article at 10.1002/chem.202303867.

3.
Biomacromolecules ; 25(2): 1171-1179, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38181417

RESUMO

The development of nonviral dendritic polymers with a simple molecular backbone and great gene delivery efficiency to effectively tackle cancer remains a great challenge. Phosphorus dendrimers or dendrons are promising vectors due to their structural uniformity, rigid molecular backbones, and tunable surface functionalities. Here, we report the development of a new low-generation unsymmetrical cationic phosphorus dendrimer bearing 5 pyrrolidinium groups and one amino group as a nonviral gene delivery vector. The created AB5-type dendrimers with simple molecular backbone can compress microRNA-30d (miR-30d) to form polyplexes with desired hydrodynamic sizes and surface potentials and can effectively transfect miR-30d to cancer cells to suppress the glycolysis-associated SLC2A1 and HK1 expression, thus significantly inhibiting the migration and invasion of a murine breast cancer cell line in vitro and the corresponding subcutaneous tumor mouse model in vivo. Such unsymmetrical low-generation phosphorus dendrimers may be extended to deliver other genetic materials to tackle other diseases.


Assuntos
Dendrímeros , MicroRNAs , Neoplasias , Animais , Camundongos , Dendrímeros/química , Vetores Genéticos , MicroRNAs/genética , Técnicas de Transferência de Genes , Cátions , Fósforo
4.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542106

RESUMO

This review describes the two-photon absorption properties of dendrimers, which are arborescent three-dimensional macromolecules differing from polymers by their perfectly defined structure. The two-photon absorption process is a third order non-linear optical property that is attractive because it can be used in a wide range of applications. In this review, dendrimers that were studied for their two-photon absorption properties are first described. Then, the use of dendritic TPA chromophores for light harvesting, photopolymerization, optical power limitation, cell imaging, singlet oxygen generation, and photodynamic therapy is described. This review thus proposes an overview of the properties and possible applications of two-photon absorbing dendrimers.


Assuntos
Dendrímeros , Fotoquimioterapia , Dendrímeros/química , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Fótons , Polímeros/química
5.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675623

RESUMO

Since the discovery of cisplatin in the 1960s, the search for metallo-drugs that are more efficient than platinum complexes with negligible side effects has attracted much interest. Among the other metals that have been examined for potential applications as anticancer agents is copper. The interest in copper was recently boosted by the discovery of cuproptosis, a recently evidenced form of cell death mediated by copper. However, copper is also known to induce the proliferation of cancer cells. In view of these contradictory results, there is a need to find the most suitable copper chelators, among which Schiff-based derivatives offer a wide range of possibilities. Gathering several metal complexes in a single, larger entity may provide enhanced properties. Among the nanometric objects suitable for such purpose are dendrimers, precisely engineered hyperbranched macromolecules, which are outstanding candidates for improving therapy and diagnosis. In this review article, we present an overview of the use of a particular Schiff base, namely pyridine-imine, linked to the surface of dendrimers, suitable for complexing copper, and the use of such dendrimer complexes in biology, in particular against cancers.


Assuntos
Cobre , Iminas , Piridinas , Animais , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Quelantes/química , Quelantes/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Dendrímeros/química , Iminas/química , Neoplasias/tratamento farmacológico , Piridinas/química , Bases de Schiff/química
6.
Chemistry ; 29(66): e202302198, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37650869

RESUMO

Two families of phosphorhydrazone dendrons having either an azide or an alkyne linked to the core and diverse types of pyridine derivatives as terminal functions have been synthesized and characterized. These dendrons were grafted via click reaction to graphene oxide (GO) functionalized with either alkyne or azide functions, respectively. The resulting modified-GO and GO-dendrons materials have been characterized by Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), and Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) analyses. In addition, the free dendrons and the dendrons grafted to GO were tested toward cancerous (HCT116) and non-cancerous (RPE1) cell lines.

7.
Molecules ; 28(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570709

RESUMO

This review presents the state of the art of interactions between two different families of nanoobjects: nanoparticles-mainly metal nanoparticles, and dendrimers-mainly phosphorhydrazone dendrimers (or dendrons). The review firstly presents the encapsulation/protection of existing nanoparticles (organic or metallic) by phosphorus-based dendrimers and dendrons. In the second part, several methods for the synthesis of metal nanoparticles, thanks to the dendrimer that acts as a template, are presented. The properties of the associations between dendrimers and nanoparticles are emphasized throughout the review. These properties mainly concern the elaboration of diverse types of hybrid materials, some of them being used as sensitive chemosensors or biosensors. Several examples concerning catalysis are also given, displaying in particular the efficient recovery and reuse of the catalytic entities.

8.
Molecules ; 28(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513445

RESUMO

Dendrimers, being highly branched monodispersed macromolecules, predominantly exhibit identical terminal functionalities within their structural framework. Nonetheless, there are instances where the presence of two distinct surface functionalities becomes advantageous for the fulfilment of specific properties. To achieve this objective, one approach involves implementing Janus dendrimers, consisting of two dendrimeric wedges terminated by dissimilar functionalities. The prevalent method for creating these structures involves the synthesis of dendrons that possess a core functionality that complements that of a second dendron, facilitating their coupling to generate the desired dendrimers. In this comprehensive review, various techniques employed in the fabrication of phosphorus-based Janus dendrimers are elucidated, displaying the different coupling methodologies employed between the two units. The advantages of phosphorus dendrimers over classic dendrimers will be shown, as the presence of at least one phosphorus atom in each generation allows for the easy monitoring of reactions and the confirmation of purity through a simple technique such as 31P NMR, as these structures typically exhibit easily interpretable patterns.

9.
Biomacromolecules ; 23(7): 2827-2837, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35694854

RESUMO

Conventional small molecular chemical drugs always have challenging limitations in cancer therapy due to their high systemic toxicity and low therapeutic efficacy. Nanotechnology has been applied in drug delivery, bringing new promising potential to realize effective cancer treatment. In this context, we develop here a new nanomicellar drug delivery platform generated by amphiphilic phosphorus dendrons (1-C17G3.HCl), which could form micelles for effective encapsulation of a hydrophobic anticancer drug doxorubicin (DOX) with a high drug loading content (42.4%) and encapsulation efficiency (96.7%). Owing to the unique dendritic rigid structure and surface hydrophilic groups, large steady void space of micelles can be created for drug encapsulation. The created DOX-loaded micelles with a mean diameter of 26.3 nm have good colloidal stability. Strikingly, we show that the drug-free micelles possess good intrinsic anticancer activity and act collectively with DOX to take down breast cancer cells in vitro and the xenografted tumor model in vivo through upregulation of Bax, PTEN, and p53 proteins for enhanced cell apoptosis. Meanwhile, the resulting 1-C17G3.HCl@DOX micelles significantly abolish the toxicity relevant to the free drug. The findings of this study demonstrate a unique nanomicelle-based drug delivery system created with the self-assembling amphiphilic phosphorus dendrons that may be adapted for chemotherapy of different cancer types.


Assuntos
Antineoplásicos , Neoplasias da Mama , Dendrímeros , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Dendrímeros/química , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Micelas , Fósforo
10.
Int J Mol Sci ; 23(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35628503

RESUMO

Tumor cells with stem cell properties are considered to play major roles in promoting the development and malignant behavior of aggressive cancers. Therapeutic strategies that efficiently eradicate such tumor stem cells are of highest clinical need. Herein, we performed the validation of the polycationic phosphorus dendrimer-based approach for small interfering RNAs delivery in in vitro stem-like cells as models. As a therapeutic target, we chose Lyn, a member of the Src family kinases as an example of a prominent enzyme class widely discussed as a potent anti-cancer intervention point. Our selection is guided by our discovery that Lyn mRNA expression level in glioma, a class of brain tumors, possesses significant negative clinical predictive value, promoting its potential as a therapeutic target for future molecular-targeted treatments. We then showed that anti-Lyn siRNA, delivered into Lyn-expressing glioma cell model reduces the cell viability, a fact that was not observed in a cell model that lacks Lyn-expression. Furthermore, we have found that the dendrimer itself influences various parameters of the cells such as the expression of surface markers PD-L1, TIM-3 and CD47, targets for immune recognition and other biological processes suggested to be regulating glioblastoma cell invasion. Our findings prove the potential of dendrimer-based platforms for therapeutic applications, which might help to eradicate the population of cancer cells with augmented chemotherapy resistance. Moreover, the results further promote our functional stem cell technology as suitable component in early stage drug development.


Assuntos
Neoplasias Encefálicas , Dendrímeros , Glioblastoma , Glioma , Neoplasias Encefálicas/metabolismo , Dendrímeros/metabolismo , Dendrímeros/farmacologia , Glioblastoma/metabolismo , Glioma/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
11.
Molecules ; 27(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500305

RESUMO

The structure of phosphorus-containing dendrimers has been studied by IR spectroscopy and optical polarization microscopy. The repeating units of dendrimer molecules are mesogens. This property arises from the conjugation of the aromatic ring and the hydrazone group. An analysis of the IR spectra showed that, with an increase in the generation number, the width of the stretching vibration bands ν(PN) and ν(PO) increases. Difficulties in packing molecules of higher generations cause conformational diversity. The shape of the dendrimer molecules was determined by analyzing the increments of dipole moments. Additionally, the modeling of the stacking of repeating links was performed. The spherical model of molecules does not satisfy the experimental dipole moments of the dendrimers. The flat disk model is more suitable for explaining step changes in dipole moments. The liquid-crystalline ordering of dendrimers under the action of applied pressure was found. With simultaneous heating and uniaxial compression, optical anisotropy appears in dendrimers. It is associated with the formation of liquid-crystalline order. However, a thermodynamically stable liquid-crystalline phase is not formed in this case. Dendrimers most likely have disk-shaped molecules.


Assuntos
Dendrímeros , Cristais Líquidos , Fósforo/química , Dendrímeros/química , Cristais Líquidos/química , Conformação Molecular , Espectrofotometria Infravermelho
12.
Bioconjug Chem ; 32(2): 339-349, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33522223

RESUMO

We designed and synthesized several families of novel amphiphilic fluorescent phosphorus dendron-based micelles showing relevant antiproliferative activities for use in the field of theranostic nanomedicine. Based on straightforward synthesis pathways, 12 amphiphilic phosphorus dendrons bearing 10 protonated cyclic amino groups (generation one), or 20 protonated amino groups (generation two), and 1 hydrophobic chain carrying 1 fluorophore moiety were created. The amphiphilic dendron micelles had the capacity to aggregate in solution using hydrophilic/hydrophobic interactions, which promoted the formation of polymeric micelles. These dendron-based micelles showed moderate to high antiproliferative activities against a panel of tumor cell lines. This paper presents for the first time the synthesis and our first investigations of new phosphorus dendron-based micelles for cancer therapy applications.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Dendrímeros/síntese química , Dendrímeros/farmacologia , Corantes Fluorescentes/química , Micelas , Fósforo/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão
13.
Chemistry ; 27(72): 17976-17998, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34713506

RESUMO

This review presents precisely defined amphiphilic dendrons, their self-association properties, and their different uses. Dendrons, also named dendritic wedges, are composed of a core having two different types of functions, of which one type is used for growing or grafting branched arms, generally multiplied by 2 at each layer by using 1→2 branching motifs. A large diversity of structures has been already synthesized. In practically all cases, their synthesis is based on the synthesis of known dendrimers, such as poly(aryl ether), poly(amidoamine) (in particular PAMAM), poly(amide) (in particular poly(L-lysine)), 1→3 branching motifs (instead of 1→2), poly(alkyl ether) (poly(glycerol) and poly(ethylene glycol)), poly(ester), and those containing main group elements (poly(carbosilane) and poly(phosphorhydrazone)). In most cases, the hydrophilic functions are on the surface of the dendrons, whereas one or two hydrophobic tails are linked to the core. Depending on the structure of the dendrons, and on the experimental conditions used, the amphiphilic dendrons can self-associate at the air-water interface, or form micelles (eventually tubular, but most generally spherical), or form vesicles. These associated dendrons are suitable for the encapsulation of low-molecular or macromolecular bioactive entities to be delivered in cells. This review is organized depending on the nature of the internal structure of the amphiphilic dendrons (aryl ether, amidoamine, amide, quaternary carbon atom, alkyl ether, ester, main group element). The properties issued from their self-associations are described all along the review.


Assuntos
Dendrímeros , Interações Hidrofóbicas e Hidrofílicas , Micelas , Polietilenoglicóis , Água
14.
Biomacromolecules ; 22(6): 2659-2675, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33970615

RESUMO

The long-term treatment of tuberculosis (TB) sometimes leads to nonadherence to treatment, resulting in multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. Inadequate bioavailability of the drug is the main factor for therapeutic failure, which leads to the development of drug-resistant cases. Therefore, there is an urgent need to design and develop novel antimycobacterial agents minimizing the period of treatment and reducing the propagation of resistance at the same time. Here, we report the development of original and noncytotoxic polycationic phosphorus dendrimers essentially of generations 0 and 1, but also of generations 2-4, with pyrrolidinium, piperidinium, and related cyclic amino groups on the surface, as new antitubercular agents active per se, meaning with intrinsic activity. The strategy is based on the phenotypic screening of a newly designed phosphorus dendrimer library (generations 0-4) against three bacterial strains: attenuated Mycobacterium tuberculosis H37Ra, virulent M. tuberculosis H37Rv, and Mangora bovis BCG. The most potent polycationic phosphorus dendrimers 1G0,HCl and 2G0,HCl are active against all three strains with minimum inhibitory concentrations (MICs) between 3.12 and 25.0 µg/mL. Both are irregularly shaped nanoparticles with highly mobile branches presenting a radius of gyration of 7 Å, a diameter of maximal 25 Å, and a solvent-accessible surface area of dominantly positive potential energy with very localized negative patches arising from the central N3P3 core, which steadily interacts with water molecules. The most interesting is 2G0,HCl, showing relevant efficacy against single-drug-resistant (SDR) M. tuberculosis H37Rv, resistant to rifampicin, isoniaid, ethambutol, or streptomycin. Importantly, 2G0,HCl displayed significant in vivo efficacy based on bacterial counts in lungs of infected Balb/C mice at a dose of 50 mg/kg oral administration once a day for 2 weeks and superior efficacy in comparison to ethambutol and rifampicin. This series of polycationic phosphorus dendrimers represents first-in-class drugs to treat TB infection, could fulfill the clinical candidate pipe of this high burden of infectious disease, and play a part in addressing the continuous demand for new drugs.


Assuntos
Dendrímeros , Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Dendrímeros/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico
15.
Molecules ; 26(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430439

RESUMO

Dendrimers are hyperbranched macromolecules, which are synthesized step-by-step by the repetition of a series of reactions. While many different types of dendrimers are known, this review focusses on the use of trivalent phosphorus derivatives (essentially phosphines and phosphoramidites) for the synthesis of dendrimers. The first part presents dendrimers constituted of phosphines at each branching point. The other parts display the use of trivalent phosphorus derivatives during the synthesis of dendrimers. Different types of reactions have been applied to phosphines. The very first examples of phosphorus-containing dendrimers were obtained by the alkylation of phosphines. Then, several families of dendrimers were elaborated by reaction of phosphoramidites. Such a type of reaction is the base of the solid phase synthesis of oligonucleotides; it has been applied in particular for the synthesis of dendrimers constituted of oligonucleotides. Finally, the Staudinger reaction between phosphines and azides afforded different families of dendrimers, and was at the origin of accelerated methods of synthesis of dendrimers. Besides, the reactivity of the P=N-P=S linkages created by this reaction led to very original dendritic structures.


Assuntos
Dendrímeros/química , Fósforo/química , Alquilação , Técnicas de Química Sintética , Dendrímeros/síntese química , Estrutura Molecular , Compostos Organofosforados/química , Fosfinas/química
16.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209285

RESUMO

AB5 compounds issued from the reactivity of hexachlorocyclotriphosphazene are relatively easy to obtain using two ways: either first the reaction of one chloride with one reagent, followed by the reaction of the five remaining Cl with another reagent, or first the reaction of five chlorides with one reagent, followed by the reaction of the single remaining Cl with another reagent. This particular property led to the use of such compounds as core for the synthesis of dendrons (dendritic wedges), using the five functions for growing the dendritic branches. The single function can be used for the synthesis of diverse types of dendrimers (onion peel, dumbbell-shape, Janus), for covalent or non-covalent grafting to solid surfaces, providing nanomaterials, for grafting a fluorophore, especially for studying biological mechanisms, or for self-associations to get micelles. All these properties are reviewed in this paper.

17.
Molecules ; 26(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920516

RESUMO

Pyridine, pyridine imine, and bipyridine imine ligands functionalized by a phenol have been synthesized and characterized, in many cases by X-ray diffraction. Several of these N-, N,N-, and N,N,N,-ligands have been grafted onto the surface of phosphorhydrazone dendrimers, from generation 1 to generation 3. The complexation ability of these monomers and dendrimers towards palladium(II) has been assayed. The corresponding complexes have been either isolated or prepared in situ. In both cases, the monomeric and dendritic complexes have been tested as catalysts in Heck couplings and in Sonogashira couplings. In some cases, a positive dendritic effect has been observed, that is, an increase of the catalytic efficiency proportional to the dendrimer generation.

18.
Chemistry ; 26(26): 5903-5910, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142179

RESUMO

First-in-class CuII and AuIII metaled phosphorus dendrons were synthesized and showed significant antiproliferative activity against several aggressive breast cancer cell lines. The data suggest that the cytotoxicity increases with reducing length of the alkyl chains, whereas the replacement of CuII with AuIII considerably increases the antiproliferative activity of metaled phosphorus dendrons. Very interestingly, we found that the cell death pathway is related to the nature of the metal complexed by the plain dendrons. CuII metaled dendrons showed a potent caspase-independent cell death pathway, whereas AuIII metaled dendrons displayed a caspase-dependent apoptotic pathway. The complexation of plain dendrons with AuIII increased the cellular lethality versus dendrons with CuII and promoted the translocation of Bax into the mitochondria and the release of Cytochrome C (Cyto C).


Assuntos
Citocromos c/metabolismo , Dendrímeros/metabolismo , Metais/química , Mitocôndrias/química , Fósforo/química , Apoptose , Morte Celular , Citocromos c/química , Dendrímeros/química , Humanos , Células MCF-7 , Metais/metabolismo , Mitocôndrias/metabolismo , Estrutura Molecular , Fósforo/metabolismo
19.
Biomacromolecules ; 21(6): 2502-2511, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32348123

RESUMO

Gene delivery, one important cancer-therapy mode, still remains to be challenging because of the shortage of highly efficient and safe nonviral vectors. Here, we revisit the development of cationic phosphorus dendrimers by synthesizing them with different generations (G1-3) and surface ligands (1-(2-aminoethyl) pyrrolidine, 1-(3-aminopropyl) piperidine, or 1-(2-aminoethyl) piperidine) for optimized gene delivery toward cancer-gene-therapy applications. First, the synthesized dendrimer derivatives were employed to condense plasmid DNA (pDNA) encoding enhanced green fluorescent protein (EGFP) to optimize their gene-delivery efficiency by varying the dendrimer generations and surface polycationic ligands. We show that all dendrimer/pDNA polyplexes display good cytocompatibility, and the 1-(2-aminoethyl) pyrrolidine-modified protonated G1 dendrimers (1-G1) display the best gene-delivery efficiency to HeLa cells under the same conditions through flow cytometry and fluorescence microscopic imaging analyses. Hence, 1-G1 dendrimers were then used as a vector to transfect pDNA encoding both EGFP and p53 protein for cancer-gene-therapy applications. Our results reveal that under the optimized conditions, the transfection of pDNA induces the significant p53 protein expression as verified through the resulted cell cycle arrest (regulation of p21 and Cdk4/Cyclin-D1 expression) and Western blotting. The cancer-gene-therapy potential of the polyplexes was finally validated through therapy of a xenografted tumor model after intratumoral injection without systemic toxicity. The developed cationic 1-G1 dendrimers may be adopted as a powerful vector system for gene therapy of cancer, as well as for highly effective gene therapy of other diseases.


Assuntos
Dendrímeros , Neoplasias , Sobrevivência Celular , Técnicas de Transferência de Genes , Terapia Genética , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/terapia , Fósforo , Plasmídeos/genética , Transfecção
20.
Molecules ; 25(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32708025

RESUMO

This review concerns the use of dendrimers, especially of phosphorhydrazone dendrimers, against cancers. After the introduction, the review is organized in three main topics, depending on the role played by the phosphorus dendrimers against cancers: (i) as drugs by themselves; (ii) as carriers of drugs; and (iii) as indirect inducer of cancerous cell death. In the first part, two main types of phosphorus dendrimers are considered: those functionalized on the surface by diverse organic derivatives, including known drugs, and those functionalized by diverse metal complexes. The second part will display the role of dendrimers as carriers of anticancer "drugs", which can be either small molecules or anticancer siRNAs, or the combination of both. In the third part are gathered a few examples of phosphorhydrazone dendrimers that are not cytotoxic by themselves, but which under certain circumstances induce a cytotoxic effect on cancerous cells. These examples include a positive influence on the human immune system and the combination of bioimaging with photodynamic therapy properties.


Assuntos
Antineoplásicos/química , Dendrímeros/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fósforo/química , Fármacos Fotossensibilizantes/química , Animais , Antineoplásicos/farmacologia , Terapia Combinada , Complexos de Coordenação/química , Terapia Genética , Humanos , Nanomedicina , Oligonucleotídeos/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA