Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanomedicine ; 13(2): 583-599, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27520727

RESUMO

The advent of nanocarriers for drug delivery has given rise to new intriguing scenarios in the cancer field. Nanocarriers indeed partly overcome the limits of traditional cytotoxic drugs principally changing the pharmacokinetic behavior of the parental drug. The peculiar characteristics of these systems strongly minimize the adverse reactions and ensure a more precise release of the compound to the tumor site. Several nanocarriers have been developed for the delivery of cytotoxic drugs such as paclitaxel and doxorubicin in order to improve both the outcome and the patients' quality of life. The aims of this review are to describe in detail the pharmacokinetics of nanocarriers, already marketed or in advanced clinical phases, for paclitaxel and doxorubicin, to highlight the main differences with the parental drugs, and to underline, in a critical manner, benefits and disadvantages related to the use of these new drug delivery systems.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/farmacocinética , Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Paclitaxel/administração & dosagem , Qualidade de Vida
2.
Bioelectrochemistry ; 148: 108269, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36179393

RESUMO

Cytochrome c (Cyt c) is an important biomarker for the early stage of apoptosis that plays a role in the diagnosis and therapy of several diseases including cancer. Here, an electrochemical sensor based on molecularly imprinted polymer (MIP) for the ultrasensitive detection of Cyt c is studied. It is prepared by electropolymerization of o-phenylenediamine in the presence of Cyt c as template, followed by solvent extraction, resulting in the formation of Cyt c recognition sites. The MIP is characterised by cyclic voltammetry and differential pulse voltammetry, using ferrocenecarboxylic acid as redox probe. Voltammetric data indicates that the MIP-sensor behaves as an electrode with partially blocked surface. The partition isotherm obtained fits the Langmuir model, indicating a high affinity for Cyt c, with an association constant Ka = 5 × 10 11 M-1. DPV measurements allow to achieve extremely high analytical sensitivity and low detection limit, in the femtomolar range, with negligible unspecific adsorption. Satisfactory analytical recovery tests performed in the presence of possible interfering proteins and in diluted human serum confirmed the selectivity of the MIP-sensor as well as its potential applicability for real samples analysis.


Assuntos
Impressão Molecular , Citocromos c , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Solventes
3.
Toxics ; 10(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35202277

RESUMO

Short-chain per-fluoroalkyl substances (PFAS) have replaced long-chains in many applications, however the toxicity and its mode of action and interactions due to the large number of these compounds and their mixtures is still poorly understood. The paper aims to compare the effects on mouse liver organoids (target organ for bioaccumulation) of two long-chain PFAS (perfluorooctane sulfonate -PFOS-, perfluorooctanoic acid -PFOA) and two short-chain PFAS commonly utilized in the industry (heptafluorobutyric acid -HFBA-, Pentafluoropropionic anhydride-PFPA) to identify the mode of action of these classes of contaminants. Cytomorphological aberrations and ALT/GDH enzyme disruption were identified but no acute toxicity endpoint neither apoptosis was detected by the two tested short-chain PFAS. After cytomorphological analysis, it is evident that short-chain PFAS affected organoid morphology inducing a reduction of cytostructural complexity and aberrant cytological features. Conversely, EC50 values of 670 ± 30 µM and 895 ± 7 µM were measured for PFOS and PFOA, respectively, together with strong ALT/GDH enzyme disruption, caspase 3 and 7 apoptosis activation and deep loss of architectural complexity of organoids in the range of 500-1000 µM. Eventually, biochemical markers and histology analysis confirmed the sensitivity of organoid tests that could be used as a fast and reproducible platform to test many PFAS and mixtures saving time and at low cost in comparison with in vivo tests. Organoids testing could be introduced as an innovative platform to assess the toxicity to fast recognize potentially dangerous pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA