Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 133(4): 704-15, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18485877

RESUMO

The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastasis. We here report that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers. Furthermore, we show that those cells have an increased ability to form mammospheres, a property associated with mammary epithelial stem cells. Independent of this, stem cell-like cells isolated from HMLE cultures form mammospheres and express markers similar to those of HMLEs that have undergone an EMT. Moreover, stem-like cells isolated either from mouse or human mammary glands or mammary carcinomas express EMT markers. Finally, transformed human mammary epithelial cells that have undergone an EMT form mammospheres, soft agar colonies, and tumors more efficiently. These findings illustrate a direct link between the EMT and the gain of epithelial stem cell properties.


Assuntos
Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Humanas/citologia , Células-Tronco/citologia , Células-Tronco Adultas/citologia , Animais , Antígeno CD24/metabolismo , Transformação Celular Neoplásica , Células Cultivadas , Humanos , Receptores de Hialuronatos/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Células-Tronco Neoplásicas/citologia , Esferoides Celulares , Células Tumorais Cultivadas
2.
Cancer Cell ; 11(3): 259-73, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17349583

RESUMO

Cells with distinct phenotypes including stem-cell-like properties have been proposed to exist in normal human mammary epithelium and breast carcinomas, but their detailed molecular characteristics and clinical significance are unclear. We determined gene expression and genetic profiles of cells purified from cancerous and normal breast tissue using markers previously associated with stem-cell-like properties. CD24+ and CD44+ cells from individual tumors were clonally related but not always identical. CD44+ cell-specific genes included many known stem-cell markers and correlated with decreased patient survival. The TGF-beta pathway was specifically active in CD44+ cancer cells, where its inhibition induced a more epithelial phenotype. Our data suggest prognostic relevance of CD44+ cells and therapeutic targeting of distinct tumor cell populations.


Assuntos
Neoplasias da Mama/metabolismo , Células-Tronco/metabolismo , Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Antígeno CD24/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Linhagem da Célula , Células Cultivadas , Receptor de Proteína C Endotelial , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos/metabolismo , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Gravidez , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Células-Tronco/patologia , Fator de Crescimento Transformador beta/metabolismo
3.
Proc Natl Acad Sci U S A ; 105(37): 14076-81, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18780791

RESUMO

Cellular identity and differentiation are determined by epigenetic programs. The characteristics of these programs in normal human mammary epithelium and their similarity to those in stem cells are unknown. To begin investigating these issues, we analyzed the DNA methylation and gene expression profiles of distinct subpopulations of mammary epithelial cells by using MSDK (methylation-specific digital karyotyping) and SAGE (serial analysis of gene expression). We identified discrete cell-type and differentiation state-specific DNA methylation and gene expression patterns that were maintained in a subset of breast carcinomas and correlated with clinically relevant tumor subtypes. CD44+ cells were the most hypomethylated and highly expressed several transcription factors with known stem cell function including HOXA10 and TCF3. Many of these genes were also hypomethylated in BMP4-treated compared with undifferentiated human embryonic stem (ES) cells that we analyzed by MSDK for comparison. Further highlighting the similarity of epigenetic programs of embryonic and mammary epithelial cells, genes highly expressed in CD44+ relative to more differentiated CD24+ cells were significantly enriched for Suz12 targets in ES cells. The expression of FOXC1, one of the transcription factors hypomethylated and highly expressed in CD44+ cells, induced a progenitor-like phenotype in differentiated mammary epithelial cells. These data suggest that epigenetically controlled transcription factors play a key role in regulating mammary epithelial cell phenotypes and imply similarities among epigenetic programs that define progenitor cell characteristics.


Assuntos
Mama/metabolismo , Metilação de DNA , Mama/citologia , Contagem de Células , Forma Celular , Células Epiteliais/citologia , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fenótipo , Células-Tronco/metabolismo , Especificidade por Substrato
4.
Cell Cycle ; 6(19): 2332-8, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17786053

RESUMO

Breast tumors are composed of a variety of cell types with distinct morphologies and behaviors. It is not clear how this tumor heterogeneity comes about. Two popular concepts that attempt to explain this are the cancer stem cell hypothesis and the clonal evolution model. Each of these ideas has been investigated for some time, leading to the accumulation of numerous findings that are used to support one or the other. Although the two views share some similarities, they are fundamentally different notions with very different clinical implications. Analysis of the research backing each concept, along with a review of the results of our recent study investigating putative breast cancer stem cells, suggests how the cancer stem cell hypothesis and the clonal evolution model may be involved in generating breast tumor heterogeneity. An understanding of this process will allow the development of more effective ways to treat and prevent breast cancer.


Assuntos
Antígenos CD/metabolismo , Neoplasias da Mama/patologia , Células-Tronco Neoplásicas/fisiologia , Animais , Transformação Celular Neoplásica , Células Clonais , Feminino , Humanos , Camundongos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA