Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nature ; 618(7963): 188-192, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165187

RESUMO

The endoplasmic reticulum and mitochondria are main hubs of eukaryotic membrane biogenesis that rely on lipid exchange via membrane contact sites1-3, but the underpinning mechanisms remain poorly understood. In yeast, tethering and lipid transfer between the two organelles is mediated by the endoplasmic reticulum-mitochondria encounter structure (ERMES), a four-subunit complex of unresolved stoichiometry and architecture4-6. Here we determined the molecular organization of ERMES within Saccharomyces cerevisiae cells using integrative structural biology by combining quantitative live imaging, cryo-correlative microscopy, subtomogram averaging and molecular modelling. We found that ERMES assembles into approximately 25 discrete bridge-like complexes distributed irregularly across a contact site. Each bridge consists of three synaptotagmin-like mitochondrial lipid binding protein domains oriented in a zig-zag arrangement. Our molecular model of ERMES reveals a pathway for lipids. These findings resolve the in situ supramolecular architecture of a major inter-organelle lipid transfer machinery and provide a basis for the mechanistic understanding of lipid fluxes in eukaryotic cells.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Saccharomyces cerevisiae , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Lipídeos , Mitocôndrias/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Sinaptotagminas/química , Sinaptotagminas/metabolismo
2.
Syst Biol ; 71(3): 512-525, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34297129

RESUMO

Establishing an evolutionary timeline is fundamental for tackling a great variety of topics in evolutionary biology, including the reconstruction of patterns of historical biogeography, coevolution, and diversification. However, the tree of life is pruned by extinction and molecular data cannot be gathered for extinct lineages. Until recently methodological challenges have prevented the application of tip-dating Bayesian approaches in morphology-based fossil-only data sets. Herein, we present a morphological data set for a group of cricetid rodents to which we apply an array of methods fairly new in paleontology that can be used by paleontologists for the analysis of entirely extinct clades. We compare the tree topologies obtained by traditional parsimony, time-calibrated, and noncalibrated Bayesian inference phylogenetic approaches and calculate stratigraphic congruence indices for each. Bayesian tip-dated clock methods outperform parsimony in the case of our data set, which includes highly homoplastic morphological characters. Regardless, all three topologies support the monophyly of Megacricetodontinae, Democricetodontinae, and Cricetodontinae. Dispersal and speciation events inferred through Bayesian Binary Markov chain Monte Carlo and biodiversity analyses provide evidence for a correlation between biogeographic events, climatic changes, and diversification in cricetids. [Bayesian tip-dating; Cricetidae; Miocene; morphological clock; paleobiodiversity; paleobiogeography; paleoecology; parsimony; STRAP.].


Assuntos
Arvicolinae , Roedores , Animais , Arvicolinae/genética , Teorema de Bayes , Fósseis , Filogenia
3.
Soft Matter ; 19(18): 3290-3300, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37092690

RESUMO

Understanding the dispersion stability and aggregation propensity of self-assembled monolayer gold NPs at a molecular level is crucial to guide their rational design and to inform about the optimal surface functionalization for specific applications. To reach this goal, in silico modeling via coarse-grained (CG) molecular dynamics (MD) simulations is a fundamental tool to complement the information acquired from experimental studies since CG modeling allows to get a deep knowledge of the molecular interactions that take place at the nanoscale in this kind of systems. Unfortunately, current CG models of monolayer-protected AuNPs present several drawbacks that limit their accuracy in certain scenarios. We here develop a CG model that is fully compatible and extends the SPICA/SDK (Shinoda-DeVane-Klein) force field. Our model allows reproducing the behavior of AuNPs functionalized with hydrophobic as well as charged and more hydrophilic ligands. This model improves upon results obtained with previously derived CG force fields and successfully describes NPs aggregation and self-assembly in aqueous solution.

4.
Cladistics ; 38(6): 702-710, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36043995

RESUMO

Extinct organisms provide crucial information about the origin and time of origination of extant groups. The importance of morphological phylogenetics for rigorously dating the tree of life is now widely recognized and has been revitalized by methodological developments such as the application of tip-dating Bayesian approaches. Traditionally, molecular clocks have been node calibrated. However, node calibrations are often unsatisfactory because they do not allow the fossil age to inform about phylogenetic hypothesis. The introduction of tip calibrations allow fossil species to be included alongside their living relatives, and the absence of molecular sequence data for these taxa to be remedied by supplementing the sequence alignments for living taxa with phenotype character matrices for both living and fossil taxa. Therefore, only phylogenetic analyses that take into account morphological characters can incorporate both fossil and extant species. Herein we present an unprecedented morphological dataset for a vast group of glirid rodents, to which different phylogenetic methodologies have been applied. We have compared the tree topologies resulting from traditional parsimony and Bayesian phylogenetic approaches and calculate stratigraphic congruence indices for each. Bayesian tip-dated clock methods seem to outperform parsimony with our dataset. The strict consensus tree recovered by tip dating invalidates the classic classification and allows dates to be proposed for the divergence and origin of the different clades.


Assuntos
Fósseis , Roedores , Animais , Filogenia , Teorema de Bayes , Roedores/genética , Dados de Sequência Molecular
5.
Soft Matter ; 17(21): 5329-5335, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33969832

RESUMO

In vitro reconstitutions of lipid membranes have proven to be an indispensable tool to rationalize their molecular complexity and to understand their role in countless cellular processes. However, amongst the various techniques used to reconstitute lipid bilayers in vitro, several approaches are not solvent-free, but rather contain residual hydrophobic solvents in between the two bilayer leaflets, generally as a consequence of the procedure used to generate the bilayer. To what extent the presence of these hydrophobic solvents modifies bilayer properties with respect to native, solvent-free, conditions remains an open question that has important implications for the appropriate interpretation of numerous experimental observations. Here, we thorouhgly characterize hydrophobic solvent-rich lipid bilayers using atomistic molecular dynamics simulations. Our data indicate that while the presence of hydrophobic solvents at high concentrations, such as hexadecane, has a significant effect on membrane thickness, their effects on surface properties, membrane order and lateral stress are quite moderate. Our results corroborate the validity of in vitro approaches as model systems for the investigations of biological membranes but raise a few cautionary aspects that must be considered when investigating specific membrane properties.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Membrana Celular , Interações Hidrofóbicas e Hidrofílicas , Solventes
6.
Molecules ; 26(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918211

RESUMO

The role and existence of low-barrier hydrogen bonds (LBHBs) in enzymatic and protein activity has been largely debated. An interesting case is that of the photoactive yellow protein (PYP). In this protein, two short HBs adjacent to the chromophore, p-coumaric acid (pCA), have been identified by X-ray and neutron diffraction experiments. However, there is a lack of agreement on the chemical nature of these H-bond interactions. Additionally, no consensus has been reached on the presence of LBHBs in the active site of the protein, despite various experimental and theoretical studies having been carried out to investigate this issue. In this work, we perform a computational study that combines classical and density functional theory (DFT)-based quantum mechanical/molecular mechanical (QM/MM) simulations to shed light onto this controversy. Furthermore, we aim to deepen our understanding of the chemical nature and dynamics of the protons involved in the two short hydrogen bonds that, in the dark state of PYP, connect pCA with the two binding pocket residues (E46 and Y42). Our results support the existence of a strong LBHB between pCA and E46, with the H fully delocalized and shared between both the carboxylic oxygen of E46 and the phenolic oxygen of pCA. Additionally, our findings suggest that the pCA interaction with Y42 can be suitably described as a typical short ionic H-bond of moderate strength that is fully localized on the phenolic oxygen of Y42.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico , Fotorreceptores Microbianos/química , Prótons , Elétrons , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Termodinâmica
7.
Chimia (Aarau) ; 73(1): 78-80, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814004

RESUMO

Nanoparticles (NPs) have sizes that approach those of pathogens and they can interact with the membranes of eukaryotic cells in an analogous fashion. Typically, NPs are taken up by the cell via the plasma membrane by receptor-mediated processes and subsequently interact with various endomembranes. Unlike pathogens, however, NPs lack the remarkable specificity gained during the evolutionary process and their design and optimization remains an expensive and time-consuming undertaking, especially considering the limited information available on their molecular interactions with cells. In this context, molecular dynamics (MD) simulations have emered as a promising strategy to investigate the mechanistic details of the interaction of NPs with mammalian or viral membranes. In particular, MD simulations have been extensively used to study the uptake process of NPs into the cell, focusing on membrane vesiculation, endocytic routes, or passive permeation processes. While such work is certainly relevant for understanding NP-cell interactions, it remains very difficult to determine the correspondence between generic models and the actual NP. Here, we review how chemically-specific MD simulations can provide rational guidelines towards further bio-inspired NP optimization.


Assuntos
Nanopartículas , Animais , Transporte Biológico , Membrana Celular , Simulação de Dinâmica Molecular
8.
PLoS Comput Biol ; 11(6): e1004231, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26111155

RESUMO

The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the "membrane-access" and the "acyl chain-binding" pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH's mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Endocanabinoides/química , Endocanabinoides/metabolismo , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/metabolismo , Amidoidrolases/genética , Sítios de Ligação , Catálise , Biologia Computacional , Humanos , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica
9.
J Am Chem Soc ; 137(34): 11170-8, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26274391

RESUMO

Horseradish peroxidase (HRP) is one of the most relevant peroxidase enzymes, used extensively in immunochemistry and biocatalysis applications. Unlike the closely related catalase enzymes, it exhibits a low activity to disproportionate hydrogen peroxide (H2O2). The origin of this disparity remains unknown due to the lack of atomistic information on the catalase-like reaction in HRP. Using QM(DFT)/MM metadynamics simulations, we uncover the mechanism for reduction of the HRP Compound I intermediate by H2O2 at atomic detail. The reaction begins with a hydrogen atom transfer, forming a peroxyl radical and a Compound II-like species. Reorientation of the peroxyl radical in the active site, concomitant with the transfer of the second hydrogen atom, is the rate-limiting step, with a computed free energy barrier (18.7 kcal/mol, ∼ 6 kcal/mol higher than the one obtained for catalase) in good agreement with experiments. Our simulations reveal the crucial role played by the distal pocket residues in accommodating H2O2, enabling formation of a Compound II-like intermediate, similar to catalases. However, out of the two pathways for Compound II reduction found in catalases, only one is operative in HRP. Moreover, the hydrogen bond network in the distal side of HRP compensates less efficiently than in catalases for the energetic cost required to reorient the peroxyl radical at the rate-determining step. The distal Arg and a water molecule in the "wet" active site of HRP have a substantial impact on the reaction barrier, compared to the "dry" active site in catalase. Therefore, the lower catalase-like efficiency of heme peroxidases compared to catalases can be directly attributed to the different distal pocket architecture, providing hints to engineer peroxidases with a higher rate of H2O2 disproportionation.


Assuntos
Biocatálise , Catalase/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Catalase/química , Domínio Catalítico , Peroxidase do Rábano Silvestre/química , Peróxido de Hidrogênio/metabolismo , Simulação de Dinâmica Molecular , Penicillium/enzimologia , Teoria Quântica
10.
J Am Chem Soc ; 136(10): 3842-51, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24512648

RESUMO

A combined strategy based on the computation of absorption energies, using the ZINDO/S semiempirical method, for a statistically relevant number of thermally sampled configurations extracted from QM/MM trajectories is used to establish a one-to-one correspondence between the structures of the different early intermediates (dark, batho, BSI, lumi) involved in the initial steps of the rhodopsin photoactivation mechanism and their optical spectra. A systematic analysis of the results based on a correlation-based feature selection algorithm shows that the origin of the color shifts among these intermediates can be mainly ascribed to alterations in intrinsic properties of the chromophore structure, which are tuned by several residues located in the protein binding pocket. In addition to the expected electrostatic and dipolar effects caused by the charged residues (Glu113, Glu181) and to strong hydrogen bonding with Glu113, other interactions such as π-stacking with Ala117 and Thr118 backbone atoms, van der Waals contacts with Gly114 and Ala292, and CH/π weak interactions with Tyr268, Ala117, Thr118, and Ser186 side chains are found to make non-negligible contributions to the modulation of the color tuning among the different rhodopsin photointermediates.


Assuntos
Rodopsina/química , Sequência de Aminoácidos , Ligação de Hidrogênio , Modelos Moleculares , Processos Fotoquímicos , Espectrofotometria , Eletricidade Estática
11.
J Am Chem Soc ; 136(6): 2313-23, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24444454

RESUMO

Oxalate decarboxylase (OxDC) catalyzes the Mn-dependent conversion of the oxalate monoanion into CO2 and formate. EPR-based strategies for investigating the catalytic mechanism of decarboxylation are complicated by the difficulty of assigning the signals associated with the two Mn(II) centers located in the N- and C-terminal cupin domains of the enzyme. We now report a mutational strategy that has established the assignment of EPR fine structure parameters to each of these Mn(II) centers at pH 8.5. These experimental findings are also used to assess the performance of a multistep strategy for calculating the zero-field splitting parameters of protein-bound Mn(II) ions. Despite the known sensitivity of calculated D and E values to the computational approach, we demonstrate that good estimates of these parameters can be obtained using cluster models taken from carefully optimized DFT/MM structures. Overall, our results provide new insights into the strengths and limitations of theoretical methods for understanding electronic properties of protein-bound Mn(II) ions, thereby setting the stage for future EPR studies on the electronic properties of the Mn(II) centers in OxDC and site-specific variants.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Carboxiliases/química , Manganês/química , Teoria Quântica , Sítios de Ligação , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Mutagênese Sítio-Dirigida
12.
Biochemistry ; 51(6): 1281-7, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22295886

RESUMO

Recently, a 3.65 Å resolution structure of the transporter NorM from the multidrug and toxic compound extrusion family has been determined in the outward-facing conformation. This antiporter uses electrochemical gradients to drive substrate export of a large class of antibiotic and toxic compounds in exchange for small monovalent cations (H(+) and Na(+)), but the molecular details of this mechanism are still largely unknown. Here we report all-atom molecular dynamics simulations of NorM, with and without the bound Na(+) cation and at different ion concentrations. Spontaneous binding of Na(+) is observed in several independent simulations with transient ion binding to D36 being necessary to reach the final binding site for which two competitive binding modes occur. Finally, the simulations indicate that the extracellular vestibule of the transporter invariably loses its characteristic V shape indicated by the crystallographic data, and it is reduced to a narrow permeation pathway lined by polar residues that can act as a specific pore for the transport of small cations. This event, together with the available structures of evolutionarily related transporters of the major facilitator superfamily (MFS), suggests that differences in the hydrophobic content of the extracellular vestibule may be characteristic of multidrug resistance transporters in contrast to substrate-selective members of the MFS.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Antiporters/química , Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Sódio/química , Vibrio cholerae/química , Água/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antiporters/metabolismo , Proteínas de Bactérias/metabolismo , Ligação Competitiva , Transporte Biológico Ativo , Cátions Monovalentes , Cristalografia por Raios X , Espaço Extracelular/química , Espaço Extracelular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Permeabilidade , Porosidade , Ligação Proteica , Sódio/metabolismo , Eletricidade Estática , Vibrio cholerae/metabolismo , Água/metabolismo
13.
Nature ; 443(7112): 687-91, 2006 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17036002

RESUMO

Mammals are among the fastest-radiating groups, being characterized by a mean species lifespan of the order of 2.5 million years (Myr). The basis for this characteristic timescale of origination, extinction and turnover is not well understood. Various studies have invoked climate change to explain mammalian species turnover, but other studies have either challenged or only partly confirmed the climate-turnover hypothesis. Here we use an exceptionally long (24.5-2.5 Myr ago), dense, and well-dated terrestrial record of rodent lineages from central Spain, and show the existence of turnover cycles with periods of 2.4-2.5 and 1.0 Myr. We link these cycles to low-frequency modulations of Milankovitch oscillations, and show that pulses of turnover occur at minima of the 2.37-Myr eccentricity cycle and nodes of the 1.2-Myr obliquity cycle. Because obliquity nodes and eccentricity minima are associated with ice sheet expansion and cooling and affect regional precipitation, we infer that long-period astronomical climate forcing is a major determinant of species turnover in small mammals and probably other groups as well.


Assuntos
Biodiversidade , Evolução Biológica , Clima , Roedores/fisiologia , Animais , História Antiga , Camada de Gelo , Espanha , Fatores de Tempo
14.
Nanoscale ; 14(40): 15181-15192, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36214308

RESUMO

Monolayer-protected metal nanoparticles (NPs) are not only promising materials with a wide range of potential industrial and biological applications, but they are also a powerful tool to investigate the behaviour of matter at nanoscopic scales, including the stability of dispersions and colloidal systems. This stability is dependent on a delicate balance between attractive and repulsive interactions that occur in the solution, and it is described in quantitative terms by the classic Derjaguin-Landau-Vewey-Overbeek (DLVO) theory, that posits that aggregation between NPs is driven by van der Waals interactions and opposed by electrostatic interactions. To investigate the limits of this theory at the nanoscale, where the continuum assumptions required by the DLVO theory break down, here we investigate NP dimerization by computing the Potential of Mean Force (PMF) of this process using fully atomistic MD simulations. Serendipitously, we find that electrostatic interactions can lead to the formation of metastable NP dimers at physiological ion concentrations. These dimers are stabilized by complexes formed by negatively charged ligands belonging to distinct NPs that are bridged by positively charged monovalent ions present in solution. We validate our findings by collecting tomographic EM images of NPs in solution and by quantifying their radial distribution function, that shows a marked peak at interparticle distance comparable with that of MD simulations. Taken together, our results suggest that not only van der Waals interactions, but also electrostatic interactions mediated by monovalent ions at physiological concentrations, contribute to attraction between nano-sized charged objects at very short length scales.

15.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36112368

RESUMO

Lipid droplets (LDs) are reservoirs for triglycerides (TGs) and sterol-esters (SEs), but how these lipids are organized within LDs and influence their proteome remain unclear. Using in situ cryo-electron tomography, we show that glucose restriction triggers lipid phase transitions within LDs generating liquid crystalline lattices inside them. Mechanistically this requires TG lipolysis, which decreases the LD's TG:SE ratio, promoting SE transition to a liquid crystalline phase. Molecular dynamics simulations reveal TG depletion promotes spontaneous TG and SE demixing in LDs, additionally altering the lipid packing of the PL monolayer surface. Fluorescence imaging and proteomics further reveal that liquid crystalline phases are associated with selective remodeling of the LD proteome. Some canonical LD proteins, including Erg6, relocalize to the ER network, whereas others remain LD-associated. Model peptide LiveDrop also redistributes from LDs to the ER, suggesting liquid crystalline phases influence ER-LD interorganelle transport. Our data suggests glucose restriction drives TG mobilization, which alters the phase properties of LD lipids and selectively remodels the LD proteome.


Assuntos
Gotículas Lipídicas , Lipólise , Triglicerídeos , Ésteres/química , Glucose/química , Gotículas Lipídicas/química , Transição de Fase , Proteoma/química , Esteróis/química , Triglicerídeos/química
16.
Biology (Basel) ; 11(8)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-36009812

RESUMO

The modern era of analytical and quantitative palaeobiology has only just begun, integrating methods such as morphological and molecular phylogenetics and divergence time estimation, as well as phenotypic and molecular rates of evolution. Calibrating the tree of life to geological time is at the nexus of many disparate disciplines, from palaeontology to molecular systematics and from geochronology to comparative genomics. Creating an evolutionary time scale of the major events that shaped biodiversity is key to all of these fields and draws from each of them. Different methodological approaches and data employed in various disciplines have traditionally made collaborative research efforts difficult among these disciplines. However, the development of new methods is bridging the historical gap between fields, providing a holistic perspective on organismal evolutionary history, integrating all of the available evidence from living and fossil species. Because phylogenies with only extant taxa do not contain enough information to either calibrate the tree of life or fully infer macroevolutionary dynamics, phylogenies should preferably include both extant and extinct taxa, which can only be achieved through the inclusion of phenotypic data. This integrative phylogenetic approach provides ample and novel opportunities for evolutionary biologists to benefit from palaeontological data to help establish an evolutionary time scale and to test core macroevolutionary hypotheses about the drivers of biological diversification across various dimensions of organisms.

17.
Chemistry ; 17(28): 7806-16, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21681839

RESUMO

Platinum-based cancer drugs, such as cisplatin, are highly effective chemotherapeutic agents used extensively for the treatment of solid tumors. However, their effectiveness is limited by drug resistance, which, in some cancers, has been associated with an overexpression of pi class glutathione S-transferase (GST P1-1), an important enzyme in the mercapturic acid detoxification pathway. Ethacraplatin (EA-CPT), a trans-Pt(IV) carboxylate complex containing ethacrynate ligands, was designed as a platinum cancer metallodrug that could also target cytosolic GST enzymes. We previously reported that EA-CPT was an excellent inhibitor of GST activity in live mammalian cells compared to either cisplatin or ethacrynic acid. In order to understand the nature of the drug-protein interactions between EA-CPT and GST P1-1, and to obtain mechanistic insights at a molecular level, structural and biochemical investigations were carried out, supported by molecular modeling analysis using quantum mechanical/molecular mechanical methods. The results suggest that EA-CPT preferentially docks at the dimer interface at GST P1-1 and subsequent interaction with the enzyme resulted in docking of the ethacrynate ligands at both active sites (in the H-sites), with the Pt moiety remaining bound at the dimer interface. The activation of the inhibitor by its target enzyme and covalent binding accounts for the strong and irreversible inhibition of enzymatic activity by the platinum complex.


Assuntos
Antineoplásicos/química , Antineoplásicos/metabolismo , Glutationa S-Transferase pi/metabolismo , Platina/química , Platina/metabolismo , Animais , Antineoplásicos/uso terapêutico , Cisplatino/química , Cisplatino/uso terapêutico , Cristalografia por Raios X , Dimerização , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Ácido Etacrínico/química , Ácido Etacrínico/metabolismo , Ácido Etacrínico/uso terapêutico , Glutationa S-Transferase pi/química , Glutationa S-Transferase pi/genética , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Molecular , Neoplasias/tratamento farmacológico , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Chimia (Aarau) ; 65(5): 330-3, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21744687

RESUMO

A thorough theoretical description of ultrafast phenomena that occur in complex systems constitutes a formidable challenge. It not only necessitates the use of quantum mechanical methods that can describe ground and possibly even electronically excited state potential energy surfaces with sufficient accuracy but also calls for approaches that can take the real-time dynamics of a system and the coupling between its electronic and nuclear degrees of freedom fully into account. Over the last years, our group has been active in the development of mixed quantum mechanical/molecular mechanical (QM/MM) methods for the in situ simulations of dynamical phenomena in ground and excited states within the adiabatic (Born-Oppenheimer) approximation. Recently, we have extended our theoretical tools with the explicit inclusion of nonadiabatic effects in the framework of Ehrenfest dynamics and Tully's fewest switches surface hopping. These extensions allow the theoretical description of nonadiabatic ultrafast phenomena in the gas phase as well as in solution, and complex biological environments.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Modelos Moleculares , Compostos Organometálicos/química , Rodopsina/química , Rutênio/química
19.
Chimia (Aarau) ; 65(9): 667-71, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22026176

RESUMO

The Laboratory of Computational Chemistry and Biochemistry is active in the development and application of first-principles based simulations of complex chemical and biochemical phenomena. Here, we review some of our recent efforts in extending these methods to larger systems, longer time scales and increased accuracies. Their versatility is illustrated with a diverse range of applications, ranging from the determination of the gas phase structure of the cyclic decapeptide gramicidin S, to the study of G protein coupled receptors, the interaction of transition metal based anti-cancer agents with protein targets, the mechanism of action of DNA repair enzymes, the role of metal ions in neurodegenerative diseases and the computational design of dye-sensitized solar cells. Many of these projects are done in collaboration with experimental groups from the Institute of Chemical Sciences and Engineering (ISIC) at the EPFL.


Assuntos
Biologia Computacional/métodos , Biologia Computacional/tendências , Modelos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular/tendências , Desenho de Fármacos , Conformação Proteica
20.
Biophys Rep (N Y) ; 1(2): None, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34939045

RESUMO

Neutral lipids (NLs) are an abundant class of cellular lipids. They are characterized by the total lack of charged chemical groups in their structure, and, as a consequence, they play a major role in intracellular lipid storage. NLs that carry a glycerol backbone, such as triacylglycerols (TGs) and diacylglycerols (DGs), are also involved in the biosynthetic pathway of cellular phospholipids, and they have recently been the subject of numerous structural investigations by means of atomistic molecular dynamics simulations. However, conflicting results on the physicochemical behavior of NLs were observed depending on the nature of the atomistic force field used. Here, we show that current phospholipid-derived CHARMM36 parameters for DGs and TGs cannot adequately reproduce interfacial properties of these NLs because of excessive hydrophilicity at the glycerol-ester region. By following a CHARMM36-consistent parameterization strategy, we develop improved parameters for both TGs and DGs that are compatible with both cutoff-based and particle mesh Ewald schemes for the treatment of Lennard-Jones interactions. We show that our improved parameters can reproduce interfacial properties of NLs and their behavior in more complex lipid assemblies. We discuss the implications of our findings in the context of intracellular lipid storage and NLs' cellular activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA